380 research outputs found

    Mechanics of universal horizons

    Full text link
    Modified gravity models such as Ho\v{r}ava-Lifshitz gravity or Einstein-{\ae}ther theory violate local Lorentz invariance and therefore destroy the notion of a universal light cone. Despite this, in the infrared limit both models above possess static, spherically symmetric solutions with "universal horizons" - hypersurfaces that are causal boundaries between an interior region and asymptotic spatial infinity. In other words, there still exist black hole solutions. We construct a Smarr formula (the relationship between the total energy of the spacetime and the area of the horizon) for such a horizon in Einstein-{\ae}ther theory. We further show that a slightly modified first law of black hole mechanics still holds with the relevant area now a cross-section of the universal horizon. We construct new analytic solutions for certain Einstein-{\ae}ther Lagrangians and illustrate how our results work in these exact cases. Our results suggest that holography may be extended to these theories despite the very different causal structure as long as the universal horizon remains the unique causal boundary when matter fields are added.Comment: Minor clarifications. References update

    Penerapan Model Pembelajaran Aktif Inquiring Minds Want to Know Guna Meningkatkan Prestasi Belajar Akuntansi Pad Siswa Kelas X Akuntansi Smk Murni 2 Surakarta Tahun Ajaran 2012/2013

    Full text link
    The objective of research was to find out whether or not there is an improvement of Accounting learning achievement through inquiring minds want to know type of active learning model in the X Accounting graders of SMK Murni 2 Surakarta in the school year of 2012/2013. This study employed a Classroom Action Research (CAR). The subject of research was the X Accounting graders of SMK Murni 2 Surakarta consisting of 21 students. The result of research showed the increased percentage of affective, psychomotor, and cognitive ability levels among the students. The mean percentage affective level was 69.29% in cycle I and 78.10% in cycle II, increasing by 8.81%. The mean percentage of psychomotor ability was 70.24% in cycle I and 77.38% in cycle II, increasing by 7.14%. The mean percentage of cognitive ability was 69.42% in cycle I and 77.90% in cycle II, increasing by 8.48%. Considering the research conducted, it could be concluded that the inquiring minds want to know type of active learning model use could improve the accounting learning achievement (either process or product). It was reflected on several indicators of student ability assessment improving in each cycle

    Can MONDian vector theories explain the cosmic speed up ?

    Full text link
    Generalized Einstein - Aether vector field models have been shown to provide, in the weak field regime, modifications to gravity which can be reconciled with the successfull MOND proposal. Very little is known, however, on the function F(K) defining the vector field Lagrangian so that an analysis of the viability of such theories at the cosmological scales has never been performed. As a first step along this route, we rely on the relation between F(K) and the MOND interpolating function μ(a/a0)\mu(a/a_0) to assign the vector field Lagrangian thus obtaining what we refer to as "MONDian vector models". Since they are able by construction to recover the MOND successes on galaxy scales, we investigate whether they can also drive the observed accelerated expansion by fitting the models to the Type Ia Supernovae data. Should be this the case, we have a unified framework where both dark energy and dark matter can be seen as different manifestations of a single vector field. It turns out that both MONDian vector models are able to well fit the low redshift data on Type Ia Supernovae, while some tension could be present in the high z regime.Comment: 15 pages, 5 tables, 4 figures, accepted for publication on Physical Review

    Cosmological evolution of interacting dark energy in Lorentz violation

    Full text link
    The cosmological evolution of an interacting scalar field model in which the scalar field interacts with dark matter, radiation, and baryon via Lorentz violation is investigated. We propose a model of interaction through the effective coupling βˉ\bar{\beta}. Using dynamical system analysis, we study the linear dynamics of an interacting model and show that the dynamics of critical points are completely controlled by two parameters. Some results can be mentioned as follows. Firstly, the sequence of radiation, the dark matter, and the scalar field dark energy exist and baryons are sub dominant. Secondly, the model also allows the possibility of having a universe in the phantom phase with constant potential. Thirdly, the effective gravitational constant varies with respect to time through βˉ\bar{\beta}. In particular, we consider a simple case where βˉ\bar{\beta} has a quadratic form and has a good agreement with the modified Λ\LambdaCDM and quintessence models. Finally, we also calculate the first post--Newtonian parameters for our model.Comment: 14 pages, published versio

    Gravity from Quantum Information

    Full text link
    It is suggested that the Einstein equation can be derived from Landauer's principle applied to an information erasing process at a local Rindler horizon and Jacobson's idea linking the Einstein equation with thermodynamics. When matter crosses the horizon, the information of the matter disappears and the horizon entanglement entropy increases to compensate the entropy reduction. The Einstein equation describes an information-energy relation during this process, which implies that entropic gravity is related to the quantum entanglement of the vacuum and has a quantum information theoretic origin.Comment: 7 pages, revtex4-1, 2 figures, recent supporting results adde

    Modified Dispersion Relations from the Renormalization Group of Gravity

    Get PDF
    We show that the running of gravitational couplings, together with a suitable identification of the renormalization group scale can give rise to modified dispersion relations for massive particles. This result seems to be compatible with both the frameworks of effective field theory with Lorentz invariance violation and deformed special relativity. The phenomenological consequences depend on which of the frameworks is assumed. We discuss the nature and strength of the available constraints for both cases and show that in the case of Lorentz invariance violation, the theory would be strongly constrained.Comment: revtex4, 9 pages, updated to match published versio

    Two approaches to testing general relativity in the strong-field regime

    Full text link
    Observations of compact objects in the electromagnetic spectrum and the detection of gravitational waves from them can lead to quantitative tests of the theory of general relativity in the strong-field regime following two very different approaches. In the first approach, the general relativistic field equations are modified at a fundamental level and the magnitudes of the potential deviations are constrained by comparison with observations. In the second approach, the exterior spacetimes of compact objects are parametrized in a phenomenological way, the various parameters are measured observationally, and the results are finally compared against the general relativistic predictions. In this article, I discuss the current status of both approaches, focusing on the lessons learned from a large number of recent investigations.Comment: To appear in the proceedings of the conference New Developments in Gravit

    The universal viscosity to entropy density ratio from entanglement

    Full text link
    We present evidence that the universal Kovtun-Son-Starinets shear viscosity to entropy density ratio of 1/4\pi can be associated with a Rindler causal horizon in flat spacetime. Since there is no known holographic (gauge/gravity) duality for this spacetime, a natural microscopic explanation for this viscosity is in the peculiar properties of quantum entanglement. In particular, it is well-known that the Minkowski vacuum state is a thermal state and carries an area entanglement entropy density in the Rindler spacetime. Based on the fluctuation-dissipation theorem, we expect a similar notion of viscosity arising from vacuum fluctuations. Therefore, we propose a holographic Kubo formula in terms of a two-point function of the stress tensor of matter fields in the bulk. We calculate this viscosity assuming a minimally coupled scalar field theory and find that the ratio with respect to the entanglement entropy density is exactly 1/4\pi in four dimensions. The issues that arise in extending this result to non-minimally coupled scalar fields, higher spins, and higher dimensions provide interesting hints about the relationship between entanglement entropy and black hole entropy.Comment: 30 pages; v2: footnote added, minor editin
    • …
    corecore