11 research outputs found

    A conserved regulatory program drives emergence of the lateral plate mesoderm

    Get PDF
    Cardiovascular cell lineages emerge with kidney, smooth muscle, and limb skeleton progenitors from the lateral plate mesoderm (LPM). How the LPM emerges during development and how it has evolved to form key lineages of the vertebrate body plan remain unknown. Here, we captured LPM formation by transgenic in toto imaging and lineage tracing using the first pan-LPM enhancer element from the zebrafish gene draculin (drl). drl LPM enhancer-based reporters are specifically active in LPM-corresponding territories of several chordate species, uncovering a universal LPM-specific gene program. Distinct from other mesoderm, we identified EomesA, FoxH1, and MixL1 with BMP/Nodal-controlled Smad activity as minimally required factors to drive drl-marked LPM formation. Altogether, our work provides a developmental and mechanistic framework for LPM emergence and the in vitro differentiation of cardiovascular cell types. Our findings suggest that the LPM may represent an ancient cell fate domain that predates ancestral vertebrates

    Hand2 delineates mesothelium progenitors and is reactivated in mesothelioma.

    Get PDF
    The mesothelium lines body cavities and surrounds internal organs, widely contributing to homeostasis and regeneration. Mesothelium disruptions cause visceral anomalies and mesothelioma tumors. Nonetheless, the embryonic emergence of mesothelia remains incompletely understood. Here, we track mesothelial origins in the lateral plate mesoderm (LPM) using zebrafish. Single-cell transcriptomics uncovers a post-gastrulation gene expression signature centered on hand2 in distinct LPM progenitor cells. We map mesothelial progenitors to lateral-most, hand2-expressing LPM and confirm conservation in mouse. Time-lapse imaging of zebrafish hand2 reporter embryos captures mesothelium formation including pericardium, visceral, and parietal peritoneum. We find primordial germ cells migrate with the forming mesothelium as ventral migration boundary. Functionally, hand2 loss disrupts mesothelium formation with reduced progenitor cells and perturbed migration. In mouse and human mesothelioma, we document expression of LPM-associated transcription factors including Hand2, suggesting re-initiation of a developmental program. Our data connects mesothelium development to Hand2, expanding our understanding of mesothelial pathologies

    Hand2 delineates mesothelium progenitors and is reactivated in mesothelioma

    Full text link
    The mesothelium lines body cavities and surrounds internal organs, widely contributing to homeostasis and regeneration. Mesothelium disruptions cause visceral anomalies and mesothelioma tumors. Nonetheless, the embryonic emergence of mesothelia remains incompletely understood. Here, we track mesothelial origins in the lateral plate mesoderm (LPM) using zebrafish. Single-cell transcriptomics uncovers a post-gastrulation gene expression signature centered on hand2 in distinct LPM progenitor cells. We map mesothelial progenitors to lateral-most, hand2-expressing LPM and confirm conservation in mouse. Time-lapse imaging of zebrafish hand2 reporter embryos captures mesothelium formation including pericardium, visceral, and parietal peritoneum. We find primordial germ cells migrate with the forming mesothelium as ventral migration boundary. Functionally, hand2 loss disrupts mesothelium formation with reduced progenitor cells and perturbed migration. In mouse and human mesothelioma, we document expression of LPM-associated transcription factors including Hand2, suggesting re-initiation of a developmental program. Our data connects mesothelium development to Hand2, expanding our understanding of mesothelial pathologies

    A conserved regulatory program drives emergence of the lateral plate mesoderm

    Get PDF
    Cardiovascular cell lineages emerge with kidney, smooth muscle, and limb skeleton progenitors from the lateral plate mesoderm (LPM). How the LPM emerges during development and how it has evolved to form key lineages of the vertebrate body plan remain unknown. Here, we captured LPM formation by transgenic in toto imaging and lineage tracing using the first pan-LPM enhancer element from the zebrafish gene draculin (drl). drl LPM enhancer-based reporters are specifically active in LPM-corresponding territories of several chordate species, uncovering a universal LPM-specific gene program. Distinct from other mesoderm, we identified EomesA, FoxH1, and MixL1 with BMP/Nodal-controlled Smad activity as minimally required factors to drive drl-marked LPM formation. Altogether, our work provides a developmental and mechanistic framework for LPM emergence and the in vitro differentiation of cardiovascular cell types. Our findings suggest that the LPM may represent an ancient cell fate domain that predates ancestral vertebrates

    A conserved regulatory program initiates lateral plate mesoderm emergence across chordates

    Get PDF
    Cardiovascular lineages develop together with kidney, smooth muscle, and limb connective tissue progenitors from the lateral plate mesoderm (LPM). How the LPM initially emerges and how its downstream fates are molecularly interconnected remain unknown. Here, we isolate a pan-LPM enhancer in the zebrafish-specific draculin (drl) gene that provides specific LPM reporter activity from early gastrulation. In toto live imaging and lineage tracing of drl-based reporters captures the dynamic LPM emergence as lineage-restricted mesendoderm field. The drl pan-LPM enhancer responds to the transcription factors EomesoderminA, FoxH1, and MixL1 that combined with Smad activity drive LPM emergence. We uncover specific activity of zebrafish-derived drl reporters in LPM-corresponding territories of several chordates including chicken, axolotl, lamprey, Ciona, and amphioxus, revealing a universal upstream LPM program. Altogether, our work provides a mechanistic framework for LPM emergence as defined progenitor field, possibly representing an ancient mesodermal cell state that predates the primordial vertebrate embryo

    Continuous addition of progenitors forms the cardiac ventricle in zebrafish

    Get PDF
    The vertebrate heart develops from several progenitor lineages. After early-differentiating first heart field (FHF) progenitors form the linear heart tube, late-differentiating second heart field (SHF) progenitors extend the atrium and ventricle, and form inflow and outflow tracts (IFT/OFT). However, the position and migration of late-differentiating progenitors during heart formation remains unclear. Here, we track zebrafish heart development using transgenics based on the cardiopharyngeal gene tbx1. Live imaging uncovers a tbx1 reporter-expressing cell sheath that continuously disseminates from the lateral plate mesoderm towards the forming heart tube. High-speed imaging and optogenetic lineage tracing corroborates that the zebrafish ventricle forms through continuous addition from the undifferentiated progenitor sheath followed by late-phase accrual of the bulbus arteriosus (BA). FGF inhibition during sheath migration reduces ventricle size and abolishes BA formation, refining the window of FGF action during OFT formation. Our findings consolidate previous end-point analyses and establish zebrafish ventricle formation as a continuous process

    Circadian rhythms in mitochondrial respiration

    No full text
    Many physiological processes are regulated with a 24h periodicity to anticipate the environmental changes of day to nighttime and vice versa. These 24h regulations, commonly termed circadian rhythms, amongst others control the sleep-wake cycle, locomotor activity and preparation for food availability during the active phase (daytime for humans, nighttime for nocturnal animals). Disturbing circadian rhythms at the organ or whole-body level by social jetlag or shift work, increases the risk to develop chronic metabolic diseases such as type 2 diabetes mellitus. The molecular basis of this risk is a topic of increasing interest. Mitochondria are essential organelles that produce the majority of energy in Eukaryotes by converting lipids and carbohydrates into ATP through oxidative phosphorylation. To adapt to the ever-changing environment, mitochondria are highly dynamic in form and function and a loss of this flexibility is linked to metabolic diseases. Interestingly, recent studies have indicated that changes in mitochondrial morphology (i.e. fusion and fission) as well as generation of new mitochondria are dependent on a viable circadian clock. In addition, fission and fusion processes display diurnal changes that are aligned to the light/dark cycle. Besides morphological changes, also mitochondrial respiration displays diurnal changes. Disturbing the molecular clock in animal models leads to abrogated mitochondrial rhythmicity and altered respiration. Moreover, mitochondrial-dependent production of reactive oxygen species, which plays a role in cellular signaling, has also been linked to the circadian clock. In this review we will summarize recent advances in the study of circadian rhythms of mitochondria and how this is linked to the molecular circadian cloc

    A conserved regulatory program initiates lateral plate mesoderm emergence across chordates

    No full text
    Cardiovascular lineages develop together with kidney, smooth muscle, and limb connective tissue progenitors from the lateral plate mesoderm (LPM). How the LPM initially emerges and how its downstream fates are molecularly interconnected remain unknown. Here, we isolate a pan-LPM enhancer in the zebrafish-specific draculin (drl) gene that provides specific LPM reporter activity from early gastrulation. In toto live imaging and lineage tracing of drl-based reporters captures the dynamic LPM emergence as lineage-restricted mesendoderm field. The drl pan-LPM enhancer responds to the transcription factors EomesoderminA, FoxH1, and MixL1 that combined with Smad activity drive LPM emergence. We uncover specific activity of zebrafish-derived drl reporters in LPM-corresponding territories of several chordates including chicken, axolotl, lamprey, Ciona, and amphioxus, revealing a universal upstream LPM program. Altogether, our work provides a mechanistic framework for LPM emergence as defined progenitor field, possibly representing an ancient mesodermal cell state that predates the primordial vertebrate embryo.publishe
    corecore