3 research outputs found

    TIRF assays for real-time observation of microtubules and actin coassembly: Deciphering tau effects on microtubule/actin interplay

    No full text
    International audienceMicrotubule and actin cytoskeletons are key players in vital processes in cells. Although the importance of microtubule-actin interaction for cell development and function has been highlighted for years, the properties of these two cytoskeletons have been mostly studied separately. Thus we now need procedures to simultaneously assess actin and microtubule properties to decipher the basic mechanisms underlying microtubule-actin crosstalk. Here we describe an in vitro assay that allows the coassembly of both filaments and the real-time observation of their interaction by TIRF microscopy. We show how this assay can be used to demonstrate that tau, a neuronal microtubule-associated protein, is a bona fide actin-microtubule cross-linker. The procedure relies on the use of highly purified proteins and chemically passivated perfusion chambers. We present a step-by-step protocol to obtain actin and microtubule coassembly and discuss the major pitfalls. An ImageJ macro to quantify actin and microtubule interaction is also provided

    Tau co-organizes dynamic microtubule and actin networks.

    No full text
    International audienceThe crosstalk between microtubules and actin is essential for cellular functions. However, mechanisms underlying the microtubule-actin organization by cross-linkers remain largely unexplored. Here, we report that tau, a neuronal microtubule-associated protein, binds to microtubules and actin simultaneously, promoting in vitro co-organization and coupled growth of both networks. By developing an original assay to visualize concomitant microtubule and actin assembly, we show that tau can induce guided polymerization of actin filaments along microtubule tracks and growth of single microtubules along actin filament bundles. Importantly, tau mediates microtubule-actin co-alignment without changing polymer growth properties. Mutagenesis studies further reveal that at least two of the four tau repeated motifs, primarily identified as tubulin-binding sites, are required to connect microtubules and actin. Tau thus represents a molecular linker between microtubule and actin networks, enabling a coordination of the two cytoskeletons that might be essential in various neuronal contexts
    corecore