26 research outputs found

    Safety, efficacy, and life satisfaction following epilepsy surgery in patients aged 60 years and older.

    No full text
    ObjectiveDespite its potential to offer seizure freedom, resective epilepsy surgery (RES) is seldom performed in patients 60 years of age or older. Demonstrating successful outcomes including an improved quality of life may raise awareness about the advantages of referring this underrepresented population for specialized evaluation. Accordingly, the authors investigated outcomes and life fulfillment in patients with an age ≥ 60 years who had undergone RES.MethodsAll patients who, at the age of 60 years or older, had undergone RES for medically refractory focal onset seizures at the authors' center were evaluated. A modified Liverpool Life Fulfillment (LLF) tool was administered postoperatively (maximum score 32). Seizure outcomes were classified according to the Engel classification system.ResultsTwelve patients underwent RES. The majority of patients (9 [75%] of 12) had at least 1 medical comorbidity in addition to seizures. The mean follow-up was 3.1 ± 2.1 years. At the time of the final follow-up, 11 (91.7%) of 12 patients were documented as having a good postsurgical outcome (Engel Class I-II). Half (6 of 12 patients) were completely seizure free (Engel Class IA). Liverpool Life Fulfillment (LLF) data were available for 11 patients. Following surgery, the mean LLF score was 26.7 ± 6. Eight patients (72.7%) noted excellent satisfaction with their RES, with 5 (45.5%) noting postoperative improvements in overall health.ConclusionsResective epilepsy surgery is safe and effective in patients with an age ≥ 60 years. Over 90% had a good surgical outcome, with 50% becoming completely seizure free despite 1 or more medical comorbidities in the majority. The study data indicated that an advancing age should not negatively influence consideration for RES

    Intracranial EEG Ictal Onset Frequency: High or Low?

    No full text
    Identifying ictal onset frequencies with wide spectrum EEG frequency analysis

    Regional variation in brain tissue texture in patients with tonic-clonic seizures.

    Get PDF
    Patients with epilepsy, who later succumb to sudden unexpected death, show altered brain tissue volumes in selected regions. It is unclear whether the alterations in brain tissue volume represent changes in neurons or glial properties, since volumetric procedures have limited sensitivity to assess the source of volume changes (e.g., neuronal loss or glial cell swelling). We assessed a measure, entropy, which can determine tissue homogeneity by evaluating tissue randomness, and thus, shows tissue integrity; the measure is easily calculated from T1-weighted images. T1-weighted images were collected with a 3.0-Tesla MRI from 53 patients with tonic-clonic (TC) seizures and 53 healthy controls; images were bias-corrected, entropy maps calculated, normalized to a common space, smoothed, and compared between groups (TC patients and controls using ANCOVA; covariates, age and sex; SPM12, family-wise error correction for multiple comparisons, p<0.01). Decreased entropy, indicative of increased tissue homogeneity, appeared in major autonomic (ventromedial prefrontal cortex, hippocampus, dorsal and ventral medulla, deep cerebellar nuclei), motor (sensory and motor cortex), or both motor and autonomic regulatory sites (basal-ganglia, ventral-basal cerebellum), and external surfaces of the pons. The anterior and posterior thalamus and midbrain also showed entropy declines. Only a few isolated regions showed increased entropy. Among the spared autonomic regions was the anterior cingulate and anterior insula; the posterior insula and cingulate were, however, affected. The entropy alterations overlapped areas of tissue changes found earlier with volumetric measures, but were more extensive, and indicate widespread injury to tissue within critical autonomic and breathing regulatory areas, as well as prominent damage to more-rostral sites that exert influences on both breathing and cardiovascular regulation. The entropy measures provide easily-collected supplementary information using only T1-weighted images, showing aspects of tissue integrity other than volume change that are important for assessing function

    Regional cortical thickness changes accompanying generalized tonic-clonic seizures.

    No full text
    ObjectiveGeneralized tonic-clonic seizures are accompanied by cardiovascular and respiratory sequelae that threaten survival. The frequency of these seizures is a major risk factor for sudden unexpected death in epilepsy (SUDEP), a leading cause of untimely death in epilepsy. The circumstances accompanying such fatal events suggest a cardiovascular or respiratory failure induced by unknown neural processes rather than an inherent cardiac or lung deficiency. Certain cortical regions, especially the insular, cingulate, and orbitofrontal cortices, are key structures that integrate sensory input and influence diencephalic and brainstem regions regulating blood pressure, cardiac rhythm, and respiration; output from those cortical regions compromised by epilepsy-associated injury may lead to cardiorespiratory dysregulation. The aim here was to assess changes in cortical integrity, reflected as cortical thickness, relative to healthy controls. Cortical alterations in areas that influence cardiorespiratory action could contribute to SUDEP mechanisms.MethodsHigh-resolution T1-weighted images were collected with a 3.0-Tesla MRI scanner from 53 patients with generalized tonic-clonic seizures (Mean age ± SD: 37.1 ± 12.6 years, 22 male) at Case Western Reserve University, University College London, and the University of California at Los Angeles. Control data included 530 healthy individuals (37.1 ± 12.6 years; 220 male) from UCLA and two open access databases (OASIS and IXI). Cortical thickness group differences were assessed at all non-cerebellar brain surface locations (P < 0.05 corrected).ResultsIncreased cortical thickness appeared in post-central gyri, insula, and subgenual, anterior, posterior, and isthmus cingulate cortices. Post-central gyri increases were greater in females, while males showed more extensive cingulate increases. Frontal and temporal cortex, lateral orbitofrontal, frontal pole, and lateral parietal and occipital cortices showed thinning. The extents of thickness changes were sex- and hemisphere-dependent, with only males exhibiting right-sided and posterior cingulate thickening, while females showed only left lateral orbitofrontal thinning. Regional cortical thickness showed modest correlations with seizure frequency, but not epilepsy duration.SignificanceCortical thickening and thinning occur in patients with generalized tonic-clonic seizures, in cardiovascular and somatosensory areas, with extent of changes sex- and hemisphere-dependent. The data show injury in key autonomic and respiratory cortical areas, which may contribute to dysfunctional cardiorespiratory patterns during seizures, as well as to longer-term SUDEP risk

    Brain areas demonstrating decreased entropy (colored) in dorsal and ventral pons (a), deep cerebellar nuclei (b), anterior cerebellum (c), ventral medial frontal cortex (h), extending through the hypothalamus and basal forebrain (d) to the thalamus (g), midbrain (f), dorsal and ventral medulla (e) in TC patients vs controls (p<0.01), corrected for multiple comparisons.

    No full text
    Near-midline slice illustrating extensive entropy declines bilaterally in the ventral temporal cortex (m), and includes the hippocampus (n) and the basal ganglia (o); sparing of deeper tissue in the thalamus (j) and pons (k) is apparent. Extensive entropy declines bilaterally in the sensorimotor cortex (l), as well as posterior cingulate (i) in TC patients appeared.</p
    corecore