1,094 research outputs found

    Exceptional long-life performance of lithium-ion batteries using ionic liquid-based electrolytes

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Advanced ionic liquid-based electrolytes are herein characterized for application in high performance lithium-ion batteries. The electrolytes based on either N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (Pyr(14)TFSI), N-butyl-N-methylpyrrolidinium bis(fluoro-sulfonyl) imide (Pyr(14)FSI), N-methoxy-ethyl-N-methylpyrrolidinium bis(trifluoromethane-sulfonyl) imide (Pyr(12O1)TFSI) or N-N-diethyl-N-methyl-N-(2methoxyethyl) ammonium bis(trifluoromethanesulfonyl) imide (DEMETFSI) ionic liquids and lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt are fully characterized in terms of ionic conductivity, viscosity, electrochemical properties and lithium-interphase stability. All IL-based electrolytes reveal suitable characteristics for application in batteries. Lithium half-cells, employing a LiFePO4 polyanionic cathode, show remarkable performance. In particular, relevant efficiency and rate-capability are observed for the Py14FSI-LiTFSI electrolyte, which is further characterized for application in a lithium-ion battery composed of the alloying Sn-C nanocomposite anode and LiFePO4 cathode. The IL-based full-cell delivers a maximum reversible capacity of about 160 mA h g(-1) (versus cathode weight) at a working voltage of about 3 V, corresponding to an estimated practical energy of about 160 W h kg(-1). The cell evidences outstanding electrochemical cycle life, i.e., extended over 2000 cycles without signs of decay, and satisfactory rate capability. This performance together with the high safety provided by the IL-electrolyte, olivine-structure cathode and Li-alloying anode, makes this cell chemistry well suited for application in new-generation electric and electronic devices

    Highly Concentrated KTFSI : Glyme Electrolytes for K/Bilayered‐V₂O₅ Batteries

    Get PDF
    Highly concentrated glyme‐based electrolytes are friendly to a series of negative electrodes for potassium‐based batteries, including potassium metal. However, their compatibility with positive electrodes has been rarely explored. In this work, the influence of the molar fraction of potassium bis(trifluoromethanesulfonyl)imide dissolved in glyme on the cycling ability of K/bilayered‐V2O5 batteries has been investigated. At high salt concentration, the interaction between K+ ions with the glyme is strengthened, leading to a limited number of free glyme molecules. Therefore, the anodic decomposition of the electrolyte solvent, as well as the dissolution of the Al current collectors, is effectively suppressed, resulting in the improved cycling ability of the K/bilayered‐V2O5 cells. In these cells, the positive electrode active material exhibits reversible capacities of 93 and 57 mAh g−1 at specific current densities of 50 and 1000 mA g−1, respectively. After 200 charge‐discharge cycles at 500 mA g−1, the cell retains 94 % of the initial capacity. The promising rate performance and capacity retention demonstrate the importance of proper electrolyte engineering for the K/bilayered‐V2O5 batteries, and the good compatibility of highly concentrated glyme‐based electrolytes with positive electrode materials for potassium batteries

    Highly concentrated KTFSI: Glyme electrolytes for K/bilayered-V2O5 batteries

    Get PDF
    Highly concentrated glyme-based electrolytes are friendly to a series of negative electrodes for potassium-based batteries, including potassium metal. However, their compatibility with positive electrodes has been rarely explored. In this work, the influence of the molar fraction of potassium bis(trifluoromethanesulfonyl)imide dissolved in glyme on the cycling ability of K/bilayered-V2O5 batteries has been investigated. At high salt concentration, the interaction between K+ ions with the glyme is strengthened, leading to a limited number of free glyme molecules. Therefore, the anodic decomposition of the electrolyte solvent, as well as the dissolution of the Al current collectors, is effectively suppressed, resulting in the improved cycling ability of the K/bilayered-V2O5 cells. In these cells, the positive electrode active material exhibits reversible capacities of 93 and 57 mAh g−1 at specific current densities of 50 and 1000 mA g−1, respectively. After 200 charge-discharge cycles at 500 mA g−1, the cell retains 94 % of the initial capacity. The promising rate performance and capacity retention demonstrate the importance of proper electrolyte engineering for the K/bilayered-V2O5 batteries, and the good compatibility of highly concentrated glyme-based electrolytes with positive electrode materials for potassium batteries. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA

    Operando pH Measurements Decipher H⁺/Zn²⁺ Intercalation Chemistry in High-Performance Aqueous Zn/δ-V₂O₅ Batteries

    Get PDF
    Vanadium oxides have been recognized to be among the most promising positive electrode materials for aqueous zinc metal batteries (AZMBs). However, their underlying intercalation mechanisms are still vigorously debated. To shed light on the intercalation mechanisms, high-performance δ-V2O5 is investigated as a model compound. Its structural and electrochemical behaviors in the designed cells with three different electrolytes, i.e., 3 m Zn(CF3SO3)2/water, 0.01 M H2SO4/water, and 1 M Zn(CF3SO3)2/acetonitrile, demonstrate that the conventional structural and elemental characterization methods cannot adequately clarify the separate roles of H+ and Zn2+ intercalations in the Zn(CF3SO3)2/water electrolyte. Thus, an operando pH determination method is developed and used toward Zn/δ-V2O5 AZMBs. This method indicates the intercalation of both H+ and Zn2+ into δ-V2O5 and uncovers an unusual H+/Zn2+-exchange intercalation–deintercalation mechanism. Density functional theory calculations further reveal that the H+/Zn2+ intercalation chemistry is a consequence of the variation of the electrochemical potential of Zn2+ and H+ during the electrochemical intercalation/release

    Nanostructured tin-carbon/ LiNi0.5Mn1.5O4 lithium-ion battery operating at low temperature

    Get PDF
    An advanced lithium ion battery using nanostructured tinecarbon lithium alloying anode and a high voltage LiNi0.5Mn1.5O4 spinel-type cathode is studied, with particular focus to the low temperature range. The stable behavior of the battery is assured by the use of an electrolyte media based on a LiPF6 salt dissolved in EC-DEC-DMC, i.e. a mixture particularly suitable for the low temperature application. Cycling tests, both in half cells and in full lithium ion battery using the SneC anode and the LiNi0.5Mn1.5O4 cathode, performed in a temperature range extending from room temperature to "30 C, indicate that the electrode/electrolyte configuration here adopted may be suitable for effective application in the lithium ion battery field. The full cell, cycled at -5 °C, shows stable capacity of about 105 mAh g-1 over more than 200 chargee-discharge cycles that is considered a relevant performance considering the low temperature region

    An overview and prospective on Al and Al-ion battery technologies

    Get PDF
    Aluminum batteries are considered compelling electrochemical energy storage systems because of the natural abundance of aluminum, the high charge storage capacity of aluminum of 2980 mA h g−1/8046 mA h cm−3, and the sufficiently low redox potential of Al3+/Al. Several electrochemical storage technologies based on aluminum have been proposed so far. This review classifies the types of reported Al-batteries into two main groups: aqueous (Al-ion, and Al-air) and non-aqueous (aluminum graphite dual-ion, Al-organic dual-ion, Al-ion, and Al-sulfur). Specific focus is given to Al electrolyte chemistry based on chloroaluminate melts, deep eutectic solvents, polymers, and “chlorine-free” formulations

    Modeling fire ignition probability and frequency using Hurdle models: a cross-regional study in Southern Europe

    Get PDF
    Abstract Background Wildfires play a key role in shaping Mediterranean landscapes and ecosystems and in impacting species dynamics. Numerous studies have investigated the wildfire occurrences and the influence of their drivers in many countries of the Mediterranean Basin. However, in this regard, no studies have attempted to compare different Mediterranean regions, which may appear similar under many aspects. In response to this gap, climatic, topographic, anthropic, and landscape drivers were analyzed and compared to assess the patterns of fire ignition points in terms of fire occurrence and frequency in Catalonia (Spain), Sardinia, and Apulia (Italy). Therefore, the objectives of the study were to (1) assess fire ignition occurrence in terms of probability and frequency, (2) compare the main drivers affecting fire occurrence, and (3) produce fire probability and frequency maps for each region. Results In pursuit of the above, the probability of fire ignition occurrence and frequency was mapped using Negative Binomial Hurdle models, while the models' performances were evaluated using several metrics (AUC, prediction accuracy, RMSE, and the Pearson correlation coefficient). The results showed an inverse correlation between distance from infrastructures (i.e., urban roads and areas) and the occurrence of fires in all three study regions. This relationship became more significant when the frequency of fire ignition points was assessed. Moreover, a positive correlation was found between fire occurrence and landscape drivers according to region. The land cover classes more significantly affected were forest, agriculture, and grassland for Catalonia, Sardinia, and Apulia, respectively. Conclusions Compared to the climatic, topographic, and landscape drivers, anthropic activity significantly influences fire ignition and frequency in all three regions. When the distance from urban roads and areas decreases, the probability of fire ignition occurrence and frequency increases. Consequently, it is essential to implement long- to medium-term intervention plans to reduce the proximity between potential ignition points and fuels. In this perspective, the present study provides an applicable decision-making tool to improve wildfire prevention strategies at the European level in an area like the Mediterranean Basin where a profuse number of wildfires take place

    Enhanced Li+ Transport in Ionic Liquid-Based Electrolytes Aided by Fluorinated Ethers for Highly Efficient Lithium Metal Batteries with Improved Rate Capability

    Get PDF
    FSI^{-}-based ionic liquids (ILs) are promising electrolyte candidates for long-life and safe lithium metal batteries (LMBs). However, their practical application is hindered by sluggish Li+^{+} transport at room temperature. Herein, it is shown that additions of bis(2,2,2-trifluoroethyl) ether (BTFE) to LiFSI-Pyr14_{14}FSI ILs can effectively mitigate this shortcoming, while maintaining ILs′ high compatibility with lithium metal. Raman spectroscopy and small-angle X-ray scattering indicate that the promoted Li+ transport in the optimized electrolyte, [LiFSI]3_{3}[Pyr14_{14}FSI]4_{4}[BTFE]4_{4} (Li3_{3}Py4_{4}BT4_{4}), originates from the reduced solution viscosity and increased formation of Li+^{+}-FSI^{-} complexes, which are associated with the low viscosity and non-coordinating character of BTFE. As a result, Li/LiFePO4_{4} (LFP) cells using Li3_{3}Py4_{4}BT4_{4} electrolyte reach 150 mAh g1^{-1} at 1 C rate (1 mA cm2^{-2}) and a capacity retention of 94.6% after 400 cycles, revealing better characteristics with respect to the cells employing the LiFSI-Pyr14_{14}FSI (operate only a few cycles) and commercial carbonate (80% retention after only 218 cycles) electrolytes. A wide operating temperature (from −10 to 40 °C) of the Li/Li3_{3}Py4_{4}BT4_{4}/LFP cells and a good compatibility of Li3_{3}Py4_{4}BT4_{4} with LiNi0.5_{0.5}Mn0.3_{0.3}Co0.2_{0.2}O2_{2} (NMC532) are demonstrated also. The insight into the enhanced Li+^{+} transport and solid electrolyte interphase characteristics suggests valuable information to develop IL-based electrolytes for LMBs
    corecore