20 research outputs found

    Methods of exposure assessment: lead-contaminated dust in Philadelphia schools.

    Get PDF
    This study was conducted to develop a method that would accurately assess children's exposure to lead in schools in Philadelphia, Pennsylvania. We examined three wipe sample protocols: one included accessible surfaces such as desktops and windowsills, the second included inaccessible surfaces such as the top of filing cabinets and light fixtures, and the third included hand wipes of the study participants. Surface wipes were collected at 10 locations from accessible and inaccessible classroom surfaces (n = 11 at each location) and from the palms of student subjects in the same locations (n = 168). We found a significant difference in lead dust concentrations determined by the three protocols (F = 4.619; 2,27 degrees of freedom; p = 0.019). Lead dust concentrations were significantly elevated at the inaccessible surfaces yet they were uniformly low on the accessible surfaces and the children's palms. These findings were consistent with observed changes in blood lead levels of study participants: after 6 months of exposure to the study locations, 156 of 168 children experienced no change in blood lead level, whereas 12 experienced only a minimal change of 1-2 microg/dL. The mere presence of lead in inaccessible dust in the school environment does not automatically constitute a health hazard because there may not be a completed exposure pathway

    Immunobiology of schistosomiasis

    No full text
    Although malaria and hookworm disease appear to be on the decline, another dreaded parasitic disease-schistosomiasis-is on the increase. Presently, the number of infected individuals with schistosomes is estimated to be 250 million, and even though only a small proportion of them become sick and die, schistosomiasis remains a medical problem of great significance. The high incidence of infection of man with Schistosoma mansoni, Schistosoma japonicum or Schistosoma haematobium, as well as the chronic debilitating diseases produced, places these organisms among the world\u27s most important infectious agents. This paper discusses the nature of immunity to schistosomiasis

    Susceptibility of Snails to Infection with Schistosomes is influenced by Temperature and Expression of Heat Shock Proteins.

    No full text
    The freshwater snail, Biomphalaria glabrata is the obligate intermediate host for the transmission of the parasitic trematode, Schistosoma mansoni the causative agent of the chronic debilitating neglected tropical disease, schistosomiasis. We showed previously that in juvenile snails, early and significant induction of stress manifested by the expression of stress proteins, Hsp 70, Hsp 90 and reverse transcriptase (RT) of the non- LTR retrotransposon, nimbus, is a characteristic feature of juvenile susceptible NMRI but not resistant BS-90 snails. These latter, however, could be rendered susceptible after mild heat shock at 32°C, revealing that resistance in the BS-90 resistant snail to schistosomes is a temperature dependent trait. Here we tested the hypothesis that maintenance of BS-90 resistant snails at the permissive temperature for several generations affects the resistance phenotype displayed at the non-permissive temperature of 25°C. The progeny of BS-90 snails bred and maintained through several generations (F1 to F4) at 32°C were susceptible to the schistosome infection when returned to room temperature, shedding cercariae at four weeks post-infection. Moreover, the study of expression levels of the heat shock protein (Hsp) 70 protein by ELISA and western blot analysis, showed that this protein is also differentially expressed between susceptible and resistant snails, with susceptible snails expressing more protein than their resistant counterparts after early exposure to wild-type but not to radiation-attenuated miracidia. These data suggested that in the face of global warming, the ability to sustain a reduction in schistosomiasis by using refractory snails as a strategy to block transmission of the disease might prove challenging since non-lethal elevation in temperature, affects snail susceptibility to S. mansoni

    An effective "three-in-one" screening assay for testing drug and nanoparticle toxicity in human endothelial cells.

    No full text
    Evaluating nanoparticle (NP) toxicity in human cell systems is a fundamental requirement for future NP biomedical applications. In this study, we have designed a screening assay for assessing different types of cell death induced by NPs in human umbilical vein endothelial cell (HUVEC) culture. This assay consists of WST-8, LDH and Hoechst 33342 staining, all performed in one well, which enables an evaluation of cell viability, necrosis and apoptosis, respectively, in the same cell sample. The 96-well format and automated processing of fluorescent images enhances the assay rapidity and reproducibility. After testing the assay functionality with agents that induced different types of cell death, we investigated the endothelial toxicity of superparamagnetic iron oxide nanoparticles (SPIONs, 8 nm), silica nanoparticles (SiNPs, 7-14 nm) and carboxylated multiwall carbon nanotubes (CNTCOOHs, 60 nm). Our results indicated that all the tested NP types induced decreases in cell viability after 24 hours at a concentration of 100 μg/ml. SPIONs caused the lowest toxicity in HUVECs. By contrast, SiNPs induced pronounced necrosis and apoptosis. A time course experiment showed the gradual toxic effect of all the tested NPs. CNTCOOHs inhibited tetrazolium derivatives at 100 μg/ml, causing false negative results from the WST-8 and LDH assay. In summary, our data demonstrate that the presented "three-in-one" screening assay is capable of evaluating NP toxicity effectively and reliably. Due to its simultaneous utilization of two different methods to assess cell viability, this assay is also capable of revealing, if NPs interfere with tetrazolium salts
    corecore