31 research outputs found
Validation du modĂšle de la solution pour lâoptimisation dâune colonne de distillation rĂ©active
Mesenchymal Stromal Cells Engage Complement and Complement Receptor Bearing Innate Effector Cells to Modulate Immune Responses
Infusion of human third-party mesenchymal stromal cells (MSCs) appears to be a promising therapy for acute graft-versus-host disease (aGvHD). To date, little is known about how MSCs interact with the body's innate immune system after clinical infusion. This study shows, that exposure of MSCs to blood type ABO-matched human blood activates the complement system, which triggers complement-mediated lymphoid and myeloid effector cell activation in blood. We found deposition of complement component C3-derived fragments iC3b and C3dg on MSCs and fluid-phase generation of the chemotactic anaphylatoxins C3a and C5a. MSCs bound low amounts of immunoglobulins and lacked expression of complement regulatory proteins MCP (CD46) and DAF (CD55), but were protected from complement lysis via expression of protectin (CD59). Cell-surface-opsonization and anaphylatoxin-formation triggered complement receptor 3 (CD11b/CD18)-mediated effector cell activation in blood. The complement-activating properties of individual MSCs were furthermore correlated with their potency to inhibit PBMC-proliferation in vitro, and both effector cell activation and the immunosuppressive effect could be blocked either by using complement inhibitor Compstatin or by depletion of CD14/CD11b-high myeloid effector cells from mixed lymphocyte reactions. Our study demonstrates for the first time a major role of the complement system in governing the immunomodulatory activity of MSCs and elucidates how complement activation mediates the interaction with other immune cells
Development of a sustainable catalytic ester amidation process
We describe the development of a sustainable ester amidation process. Base and solvent screening, combined with the application of Design of Experiments methodology was employed to identify an optimized set of reaction conditions using a sustainable protocol. Utilizing these optimized conditions, treatment of a range of ester derivatives with amino alcohols in the presence of a catalytic quantity of potassium phosphate deploying iso-propanol as solvent results in the highly efficient generation of a range of amido-alcohol derivatives in good to excellent yield, accompanied with excellent reaction mass efficiency (RME)
Dissecting the instant blood-mediated inflammatory reaction in islet xenotransplantation.
BACKGROUND: A massive destruction of transplanted tissue occurs immediately following transplantation of pancreatic islets from pig to non-human primates. The detrimental instant blood-mediated inflammatory reaction (IBMIR), triggered by the porcine islets, is a likely explanation for this tissue loss. This reaction may also be responsible for mediating an adaptive immune response in the recipient that requires a heavy immunosuppressive regimen. MATERIALS AND METHODS: Low molecular weight dextran sulfate (LMW-DS) and the complement inhibitor Compstatin were used in a combination of in vitro and in vivo studies designed to dissect the xenogeneic IBMIR in a non-human primate model of pancreatic islet transplantation. Adult porcine islets (10,000 IEQs/kg) were transplanted intraportally into three pairs of cynomolgus monkeys that had been treated with LMW-DS or heparin (control), and the effects on the IBMIR were characterized. Porcine islets were also incubated in human blood plasma in vitro to assess complement inhibition by LMW-DS and Compstatin. RESULTS: Morphological scoring and immunohistochemical staining revealed that the severe islet destruction and macrophage, neutrophilic granulocyte, and T-cell infiltration observed in the control (heparin-treated) animals were abrogated in the LMW-DS-treated monkeys. Both coagulation and complement activation were significantly reduced in monkeys treated with LMW-DS, but IgM and complement fragments were still found on the islet surface. This residual complement activation could be inhibited by Compstatin in vitro. CONCLUSIONS: The xenogeneic IBMIR in this non-human primate model is characterized by an immediate binding of antibodies that triggers deleterious complement activation and a subsequent clotting reaction that leads to further complement activation. The effectiveness of LMW-DS (in vivo and in vitro) and Compstatin (in vitro) in inhibiting this IBMIR provides the basis for a protocol that can be used to abrogate the IBMIR in pig-human clinical islet transplantation