59 research outputs found

    GaN-based HEMTs on Low Resistivity Silicon Technology for Microwave Applications

    Get PDF
    This paper investigates the effect of insertion AlN spacer between the GaN channel and buffer in a sub-micron gate (0.3 μm) AlGaN/GaN HEMTs on a low-resistivity (LR) (σ < 10 Ω.cm) silicon substrates on RF performance. Enhancement in short circuit current gain (fT) and maximum frequency of oscillation (fMAX) was observed in the HEMT with a 1 nm AlN spacer, where (fT) and (fMAX) were increased from 47 GHz to 55 GHz and 79 GHz to 121 GHz, respectively. Small-signal-modelling analysis was carried out to study this improvement in performance. We found that the AlN interlayer played a crucial role in reducing the gate-source capacitance, Cgs, by 36 % and delay, τ, by 20 % under the gate, as a result of an increase in mobility and a reduction in trap-related effects

    Miniature mesa extension for a planar submicron AlGaN/GaN HEMT gate formation

    Get PDF
    In this letter, a novel approach is presented to overcome issues in AlGaN/GaN high elec- tron mobility transistors (HEMTs), such as metal discontinuity of the gate stemmed from conven- tional mesa isolation. This usually requires a careful mesa etch process to procure an anisotropic mesa-wall profile. An alternative technique is the use of ion implantation for device isolation instead of conventional mesa for a planar device formation. However, ion implantation is a costly process and not always easily accessible. In this work, the proposed method is to simply extend the mesa below the gate just enough to accommodate the gatefeed, thereby ensuring the entire gate is planar in structure up to the gatefeed. The newly developed device exhibited no compromise to the DC (direct current) and RF (radio frequency) performance. Conversely, it produced a planar gate con- figuration with an enhanced DC transconductance (approximately 20% increase is observed) and a lower gate leakage while the etch process is considerably simplified. Similarly, the RF transconduct- ance of proposed device (device B) increased by 80% leading to considerable improvements in RF performance

    Passive Components Technology for THz-Monolithic Integrated Circuits (THz-MIC)

    Get PDF
    In this work, a viable passive components and transmission media technology is presented for THz-Monolithic Integrated Circuits (THz-MIC). The developed technology is based on shielded microstrip (S-MS) employing a standard monolithic microwave integrated circuit compatible process. The S-MS transmission media uses a 5-μm layer of benzocyclobutene (BCB) on shielded metalized ground plates avoiding any substrate coupling effects. An insertion loss of less than 3 dB/mm was achieved for frequencies up to 750 GHz. To prove the effectiveness of the technology, a variety of test structures, passive components and antennas have been design, fabricated and characterized. High Q performance was demonstrated making such technology a strong candidate for future THz-MIC technology for many applications such as radar, communications, imaging and sensing

    Terahertz Monolithic Integrated Circuits (TMICs) Array Antenna Technology On GaN-on-Low Resistivity Silicon Substrates

    Get PDF
    In this paper, we have demonstrated a viable microstrip array patch antenna technology for the first time on GaN-on-low resistivity silicon (LR-Si) substrates (ρ <; 40 Ω.cm) at H-band frequencies (220-325 GHz). The developed technology is compatible with standard MMIC technology with no requirement for high temperature processes. To mitigate the losses presented by the substrate and to enhance the performance of the integrated array antenna at THz frequencies, the driven patch is shielded by silicon nitride and gold layer in addition to a layer of benzocyclobutene (BCB). The demonstrated 4×1 array integrated antenna showed a measured resonance frequency in agreement with our simulation at 0.27 THz; a measured S11 as low as -41 dB was obtained. A directivity, gain and radiation efficiency of 11.2 dB, 5.2 dB, and 20% respectively was observed from the 3D EM model for a 5 μm BCB inset. To the authors' knowledge, this is the first demonstration of a THz integrated microstrip array antenna for TMIC technology; this developed technology is promising for high performance III-V electronic material on low resistivity/high dielectric substrates

    Modeling and simulation of ultrahigh sensitive AlGaN/AlN/GaN HEMT based hydrogen gas detector with low detection limit

    Get PDF
    Presented through this work is a steady state analytical model of the GaN HEMT based gas detector. GaN with high chemical and thermal stability provides promises for detectors in hazardous environments. However, HEMT sensor resolution must be improved to develop high precision gas sensors for automotive and space applications. The proposed model aids in systematical study of the sensor performance and prediction of sensitivities. The linear relation of threshold voltage shift at thermal equilibrium is used in predicting the sensor response. Numerical model for the reaction rates and the electrical dipole at the adsorption sites at the surface and metal/semiconductor interface have been developed and the sensor performance is analyzed for various gas concentrations. The validation of the model has been achieved through surface and interfacial charge adsorption-based gate electrode work function, Schottky barrier, 2DEG and threshold voltage deduction using MATLAB and SILVACO ATLAS TCAD. Further the applicability of gd (channel conductance) as gas sensing metric is also presented. With high ID and gd percentile sensitivities of 118.5% and 92 % for 10 ppm hydrogen concentration. The sensor shows capability for detection in sub-ppm levels by exhibiting a response of 0.043% for 0.01ppm (10 ppb) hydrogen concentration. The detection limit of the sensor (1% sensitivity) presented here is 169 ppb and the device current increases by 34.2 μA for 1ppb hydrogen concentration

    Optimization of ohmic contact for AlGaN/ GaN HEMT on low resistivity silicon

    Get PDF
    In this article, we report the optimization of ohmic contact formation on AlGaN/GaN on low-resistivity silicon. For achieving this, a strategy of uneven AlGaN/GaN was introduced through patterned etching of the substrate under the contact. Various pattern designs (holes, horizontal lines, vertical lines, grid) and varied etch depth (above and below the 2-D electron gas) were investigated. Furthermore, a study of planar and nonplanar ohmic metallization was investigated. Compared to a traditional fabrication strategy, we observed a reduced contact resistance from 0.35 to 0.27 Ω · mm by employing a grid etching approach with a “below channel” etch depth and nonplanar ohmic metallization. In general, measurements of “below channel” test structures exhibited improved contact resistance compared to “above channel” in both planar and nonplanar ohmic metallizatio

    GaN-HEMT on Si as a robust visible-blind UV detector with high responsivity

    Get PDF
    This work presents performance evaluation of GaN High Electron Mobility Transistor (HEMT) based ultraviolet (UV) detector on Si substrate. In addition to the fabrication and characterization, a systematic study is presented here using simulations extensively to investigate the UV detection mechanism. Output current has been chosen as the sensing metric, the fabricated device exhibits a high UV responsivity of 1.62 x 107 A/W at 2.5 x 10-10 W, VGS=0.5 V. Simulations have been done using optical modules available in Silvaco ATLAS TCAD to analyze the energy band bending, Two-Dimensional Electron Gas (2DEG), channel potentials and electric fields in the device. This model can aid in systematic study of HEMT based detectors in terms of dimensional and epi layer design optimizations for sensitivity enhancements. The UV response of the device is found to decrease as the wavelength approaches the visible light wavelength. This makes the photodetectors blind to visible light ensuring selective detection of UV wavelengths. It has been observed that as the area for UV absorption is increased by increasing the W/L ratio, the increases. For a W/L ratio of 100, the detector exhibits a responsivity of 1.86 x 107 A/W

    Recent development and futuristic applications of MEMS based piezoelectric microphones

    Get PDF
    This paper presents a comprehensive literature survey of MEMS based piezoelectric microphones along with the fabrication processes involved, application domains, and methodologies used for experimentations. Advantages and limitations of existing microphones are presented with the impact of process parameters during the thin film growth. This review identifies the issues faced by the microphone technologies spanning from the invention of microphones to the most recent state-of-the-art solutions implemented to overcome or address them. A detailed comparison of performance in terms of sensitivity and dynamic range is presented here that can be used to decide the piezoelectric material and process to be used to develop sensors based on the bandwidth requirement. Electrical and mechanical properties of different piezoelectric materials such as AlN, ZnO, quartz, PZT, PVDF, and other polymers that has great potential to be used as the sensing membrane in development and deployment of these microphones are presented along with the complications faced during the fabrication. Insights on the future of these sensors and emerging application domains are also discussed

    Buffer Induced Current-Collapse in GaN HEMTs on Highly Resistive Si Substrates

    Get PDF
    We demonstrate that the highly resistive Si substrate in GaN-on-Si RF HEMTs does not act as an insulator, but instead behaves as a conductive ground plane for static operation and can cause significant back-gate-induced current collapse. Substrate ramp characterization of the buffer shows good agreement with device simulations and indicates that the current collapse is caused by charge-redistribution within the GaN layer. Potential solutions, which alter charge storage and leakage in the epitaxy to counter this effect, are then presented

    Quantifying Temperature-dependent Substrate Loss in GaN-on-Si RF Technology

    Get PDF
    Intrinsic limits to temperature-dependent substrate loss for GaN-on-Si technology, due to the change in resistivity of the substrate with temperature, are evaluated using an experimentally validated device simulation framework. Effect of room temperature substrate resistivity on temperature-dependent CPW line loss at various operating frequency bands are then presented. CPW lines for GaN-on-high resistivity Si are shown to have a pronounced temperature-dependence for temperatures above 150{\deg}C and have lower substrate losses for frequencies above the X-band. On the other hand, GaN-on-low resistivity Si is shown to be more temperature-insensitive and have lower substrate losses than even HR-Si for lower operating frequencies. The effect of various CPW geometries on substrate loss is also presented to generalize the discussion. These results are expected to act as a benchmark for temperature dependent substrate loss in GaN-on-Si RF technology.Comment: 7 pages (double-column), 10 figure
    corecore