22 research outputs found
Alternative shear reinforcement for reinforced concrete flat slabs
This paper presents the first series of validation tests for a patented shear reinforcement system for reinforced concrete flat slabs. The system, called “Shearband,” consists of elongated thin steel strips punched with holes, which undulate into the slab from the top surface. The main advantages of the new reinforcement system are structural effectiveness, flexibility, simplicity, and speed of construction. Four reinforced concrete slabs were tested in a specially designed test rig. The slabs reinforced in shear exhibited ductile behavior after achieving their full flexural potential, thus proving the effectiveness of the new reinforcement. This paper reviews briefly existing types of shear reinforcement and identifies the need for more efficient and economic solutions. Details of the experimental setup and results are given, including strain and deflection measurements as well as photographs of sections through the slabs. Finally, comparisons are made with the ACI 318 and BS8110 code predictions, which confirm that the system enabled the slabs to avoid punching shear failure and achieve their flexural potential. In addition, both codes are shown to lead to conservative estimates of flexural and punching shear capacities of reinforced concrete slabs
Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials
Stromal tumor-infiltrating lymphocytes (sTILs) are a potential predictive biomarker for immunotherapy response in metastatic triple-negative breast cancer (TNBC). To incorporate sTILs into clinical trials and diagnostics, reliable assessment is essential. In this review, we propose a new concept, namely the implementation of a risk-management framework that enables the use of sTILs as a stratification factor in clinical trials. We present the design of a biomarker risk-mitigation workflow that can be applied to any biomarker incorporation in clinical trials. We demonstrate the implementation of this concept using sTILs as an integral biomarker in a single-center phase II immunotherapy trial for metastatic TNBC (TONIC trial, NCT02499367), using this workflow to mitigate risks of suboptimal inclusion of sTILs in this specific trial. In this review, we demonstrate that a web-based scoring platform can mitigate potential risk factors when including sTILs in clinical trials, and we argue that this framework can be applied for any future biomarker-driven clinical trial setting
Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials
Stromal tumor-infiltrating lymphocytes (sTILs) are a potential predictive biomarker for immunotherapy response in metastatic triple-negative breast cancer (TNBC). To incorporate sTILs into clinical trials and diagnostics, reliable assessment is essential. In this review, we propose a new concept, namely the implementation of a risk-management framework that enables the use of sTILs as a stratification factor in clinical trials. We present the design of a biomarker risk-mitigation workflow that can be applied to any biomarker incorporation in clinical trials. We demonstrate the implementation of this concept using sTILs as an integral biomarker in a single-center phase II immunotherapy trial for metastatic TNBC (TONIC trial, NCT02499367), using this workflow to mitigate risks of suboptimal inclusion of sTILs in this specific trial. In this review, we demonstrate that a web-based scoring platform can mitigate potential risk factors when including sTILs in clinical trials, and we argue that this framework can be applied for any future biomarker-driven clinical trial setting
Recommended from our members
Report on computational assessment of Tumor Infiltrating Lymphocytes from the International Immuno-Oncology Biomarker Working Group
Funder: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)Funder: National Center for Research Resources under award number 1 C06 RR12463-01, VA Merit Review Award IBX004121A from the United States Department of Veterans Affairs Biomedical Laboratory Research and Development Service, the DOD Prostate Cancer Idea Development Award (W81XWH-15-1-0558), the DOD Lung Cancer Investigator-Initiated Translational Research Award (W81XWH-18-1-0440), the DOD Peer Reviewed Cancer Research Program (W81XWH-16-1-0329), the Ohio Third Frontier Technology Validation Fund, the Wallace H. Coulter Foundation Program in the Department of Biomedical Engineering and the Clinical and Translational Science Award Program (CTSA) at Case Western Reserve University.Funder: Susan G Komen Foundation (CCR CCR18547966) and a Young Investigator Grant from the Breast Cancer Alliance.Funder: The Canadian Cancer SocietyFunder: Breast Cancer Research Foundation (BCRF), Grant No. 17-194Abstract: Assessment of tumor-infiltrating lymphocytes (TILs) is increasingly recognized as an integral part of the prognostic workflow in triple-negative (TNBC) and HER2-positive breast cancer, as well as many other solid tumors. This recognition has come about thanks to standardized visual reporting guidelines, which helped to reduce inter-reader variability. Now, there are ripe opportunities to employ computational methods that extract spatio-morphologic predictive features, enabling computer-aided diagnostics. We detail the benefits of computational TILs assessment, the readiness of TILs scoring for computational assessment, and outline considerations for overcoming key barriers to clinical translation in this arena. Specifically, we discuss: 1. ensuring computational workflows closely capture visual guidelines and standards; 2. challenges and thoughts standards for assessment of algorithms including training, preanalytical, analytical, and clinical validation; 3. perspectives on how to realize the potential of machine learning models and to overcome the perceptual and practical limits of visual scoring
Recommended from our members
Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials
Funder: Breast Cancer Research Foundation (BCRF); doi: https://doi.org/10.13039/100001006Abstract: Stromal tumor-infiltrating lymphocytes (sTILs) are a potential predictive biomarker for immunotherapy response in metastatic triple-negative breast cancer (TNBC). To incorporate sTILs into clinical trials and diagnostics, reliable assessment is essential. In this review, we propose a new concept, namely the implementation of a risk-management framework that enables the use of sTILs as a stratification factor in clinical trials. We present the design of a biomarker risk-mitigation workflow that can be applied to any biomarker incorporation in clinical trials. We demonstrate the implementation of this concept using sTILs as an integral biomarker in a single-center phase II immunotherapy trial for metastatic TNBC (TONIC trial, NCT02499367), using this workflow to mitigate risks of suboptimal inclusion of sTILs in this specific trial. In this review, we demonstrate that a web-based scoring platform can mitigate potential risk factors when including sTILs in clinical trials, and we argue that this framework can be applied for any future biomarker-driven clinical trial setting
Recommended from our members
Pitfalls in assessing stromal tumor infiltrating lymphocytes (sTILs) in breast cancer
Abstract: Stromal tumor-infiltrating lymphocytes (sTILs) are important prognostic and predictive biomarkers in triple-negative (TNBC) and HER2-positive breast cancer. Incorporating sTILs into clinical practice necessitates reproducible assessment. Previously developed standardized scoring guidelines have been widely embraced by the clinical and research communities. We evaluated sources of variability in sTIL assessment by pathologists in three previous sTIL ring studies. We identify common challenges and evaluate impact of discrepancies on outcome estimates in early TNBC using a newly-developed prognostic tool. Discordant sTIL assessment is driven by heterogeneity in lymphocyte distribution. Additional factors include: technical slide-related issues; scoring outside the tumor boundary; tumors with minimal assessable stroma; including lymphocytes associated with other structures; and including other inflammatory cells. Small variations in sTIL assessment modestly alter risk estimation in early TNBC but have the potential to affect treatment selection if cutpoints are employed. Scoring and averaging multiple areas, as well as use of reference images, improve consistency of sTIL evaluation. Moreover, to assist in avoiding the pitfalls identified in this analysis, we developed an educational resource available at www.tilsinbreastcancer.org/pitfalls
Detection of virulence and multidrug resistance operons in Pseudomonas aeruginosa isolated from Egyptian Baladi sheep and goat
Background: Pseudomonas aeruginosa is a pit of an enormous group of free-living bacteria that are able to live everywhere and suggested to be the causative agent of great scope of acute and chronic animal infections.
Aim: The current study was carried out to illustrate the prevalence of P. aeruginosa in small ruminants and existence of some virulence operons as well as its antimicrobial resistance.
Materials and Methods: A total of 155 samples from sheep and 105 samples from goats (mouth abscesses, fecal swabs, nasal, tracheal swabs, and lung tissue) were collected for bacteriological study, existence of some virulence expression operons with the study of their sensitivity to the antimicrobials using disc diffusion and presence of mexR operon which is responsible for multidrug resistance (MDR).
Results: The bacteriological examination revealed that P. aeruginosa was isolated from nine out of 155 samples from sheep (5.8%) and four isolates out of 105 samples from goat (3.8%). It is found that 12 (92.3%), 10 (76.9 %), and 8 (61.5%) of P. aeruginosa isolates harbored hemolysin phospholipase gene (pclH), gene (exoS), and enterotoxin gene (toxA), respectively. The results of antibiotic sensitivity test showed that all tested isolates were resistant to ampicillin, bacitracin, erythromycin, streptomycin, tetracycline, trimethoprim-sulfamethoxazole, and tobramycin but sensitive to ciprofloxacin and norfloxacin. The MDR (mexR) operon was existed in all isolates.
Conclusion: There is a growing risk for isolation of virulent MDR P. aeruginosa from sheep and goat illness cases, and this should be regarded in the efficient control programs