20 research outputs found

    Drug Screening for Discovery of Broad-spectrum Agents for Soil-transmitted Nematodes

    Get PDF
    Soil-transmitted nematodes (STNs), namely hookworms, whipworms, and ascarids, are extremely common parasites, infecting 1-2 billion of the poorest people worldwide. Two benzimidazoles, albendazole and mebendazole, are currently used in STN mass drug administration, with many instances of low/reduced activity reported. New drugs against STNs are urgently needed. We tested various models for STN drug screening with the aim of identifying the most effective tactics for the discovery of potent, safe and broad-spectrum agents. We screened a 1280-compound library of approved drugs to completion against late larval/adult stages and egg/larval stages of both the human hookworm parasite Ancylostoma ceylanicum and the free-living nematode Caenorhabditis elegans, which is often used as a surrogate for STNs in screens. The quality of positives was further evaluated based on cheminformatics/data mining analyses and activity against evolutionarily distant Trichuris muris whipworm adults. From these data, two pairs of positives, sulconazole/econazole and pararosaniline/cetylpyridinium, predicted to target nematode CYP-450 and HSP-90 respectively, were prioritized for in vivo evaluation against A. ceylanicum infections in hamsters. One of these positives, pararosaniline, showed a significant impact on hookworm fecundity in vivo. Taken together, our results suggest that anthelmintic screening with A. ceylanicum larval stages is superior to C. elegans based on both reduced false negative rate and superior overall quality of actives. Our results also highlight two potentially important targets for the discovery of broad-spectrum human STN drugs

    Anthelminthic Screening for Parasitic Nematodes

    Get PDF
    For many parasitic diseases, high-throughput phenotypic screening is an important tool in finding new drugs. Some of the most important parasitic diseases are caused by nematodes. However, these parasitic nematodes are not typically amenable to high throughput screening. Due to the ease of its maintenance and suitability for high throughput assay, the nematode Caenorhabditis elegans is instead used. To address whether C. elegans is a good model for nematode drug discovery, we compared the drug susceptibility of C. elegans relative to the human hookworm nematode parasite Ancylostoma ceylanicum at several developmental stages using a library of FDA approved drugs. I will present results of these studies that point to how well C. elegans efficacy correlates with hookworm efficacy and how early larval stages (easier to get) correlated with adult stages (more representative of what stage is targeted in human therapy). In addition, we are working on moderate-high throughput system for screening adult parasites. Murine Holigmosomoides polygyrus is a good model for human parasitic nematodes. Using Union Biometrica, Copas, worm sorter we were able to sort H. polygyrus into 384 well format. Here I will discuss the capabilities of this system as well as how we are building de novo, in collaboration with the Albrecht laboratory at WPI, an imaging and image analysis platform for screening adult stages of this parasite against large drug libraries

    Use of whole plant Artemisia annua L. as an antimalarial therapy

    Get PDF
    Anti-malarial drugs are primary weapons for reducing Plasmodium transmission in human populations. Successful drugs have been highly efficacious and inexpensive to synthetically manufacture. Emergence of resistant parasites reduces the lifespan of each drug that is developed and deployed. Currently, the most effective anti-malarial is artemisinin (AN), which is extracted from the leaves of Artemisia annua. Because of its poor pharmacokinetic properties and prudent efforts to curtail emergence of resistance, AN is prescribed only in combination with other anti-malarials composing an Artemisinin Combination Therapy (ACT). Low yield in the plant and the added cost of secondary anti-malarials in the ACT, make AN in the developing world a costly treatment. Here we show that dried leaves of A. annua administered orally are more effective at killing malaria parasites than a comparable dose of purified drug in a rodent malaria model (P. chabaudi). A single dose of whole plant (WP) A. annua containing 24 mg/kg AN clears 99% of parasites, where a comparable dose of pure drug has half that effect. This is consistent with findings that blood levels of AN are 40 times greater in mice receiving WP versus those given pure drug. We hypothesize that in addition to increasing bioavailability of AN, administration of WP alone may constitute a combination therapy because it contains other anti-malarial compounds that have been shown to synergize with AN. Inexpensive, efficacious, and resilient treatment for malaria based upon WP A. annua that can be grown and processed locally would be an effective addition to the global effort to reduce malaria morbidity and mortality

    Developing a Whole Plant Artemisia annua Antimalarial Therapeutic: pACT

    Get PDF
    The GRAS plant Artemisia annua L. produces the sesquiterpene lactone, artemisinin. The current therapy for malaria is artemisinin + an older drug: artemisinin combination therapy (ACT). In Plasmodium chabaudi-infected mice, dried leaves of A. annua are more potent than equal amounts of pure artemisinin and may also prevent artemisinin drug resistance from emerging. This whole plant therapy is pACT: plant-based artemisinin combination therapy. Pharmacokinetics in healthy and infected mice given either pure artemisinin or pACT is different and showed that \u3e 40 fold more artemisinin enters the blood when plant material is present; plant matrix enhanced bioavailability into serum. Dried leaves as capsules or tablets given to African malaria patients were also efficacious. Flavonoids, phenolic acids, monoterpenes and other artemisinic metabolites found in the plant have mild antimalarial activity. Some may synergize with artemisinin to enhance its efficacy. In simulated digestion studies the effects of cellulose and gelatin capsules, sucrose, 4 oils, and 3 staple grains (rice, corn, and millet) were studied to determine their effect on AN and flavonoid release into the liquid phase of the intestinal stage of digestion. Compared to pACT alone: sucrose and oil enhanced release of flavonoids by 100%, but artemisinin was unaffected; both capsule types, and corn and millet meal significantly reduced artemisinin release, but had no effect on flavonoids. From field trials in MA, it was estimated that \u3e 500,000 patients could be treated from plants grown on 1 ac of land. Analysis of 10 crops of the high artemisinin-producing WPI clone of A. annua grown under different field and lab conditions showed there was consistent production of artemisinin at about 1.4% DW. Together these results show how a simple herbal remedy could be used as an efficacious, inexpensive, controlled and sustainable orally delivered therapeutic for treating malaria and other artemisinin-susceptible diseases

    Small Molecule Inhibitors of Metabolic Enzymes Repurposed as a New Class of Anthelmintics

    Get PDF
    We thank Qi Wang for her technical assistance related to clustering compounds and identifying representatives for screening. This work was supported by National Institute of Allergy and Infectious Diseases (NIAID) grant AI081803 to M.M. The study was also partly supported by NIAID grant AI056189 to R.V.A.Peer reviewedPostprin
    corecore