304 research outputs found

    When hot water freezes before cold

    Get PDF
    I suggest that the origin of the Mpemba effect (the freezing of hot water before cold) is freezing-point depression by solutes, either gaseous or solid, whose solubility decreases with increasing temperature so that they are removed when water is heated. They are concentrated ahead of the freezing front by zone refining in water that has not been heated, reduce the temperature of the freezing front, and thereby reduce the temperature gradient and heat flux, slowing the progress of the front. I present a simple calculation of this effect, and suggest experiments to test this hypothesis.Comment: 7 pages, 1 figur

    Calculation of Screening Masses in a Chiral Quark Model

    Full text link
    We consider a simple model for the coordinate-space vacuum polarization function which is often parametrized in terms of a screening mass. We discuss the circumstances in which the standard result for the screening mass, msc=πTm_{sc}=\pi T, is obtained. In the model considered here, that result is obtained when the momenta in the relevant vacuum polarization integral are small with respect to the first Matsubara frequency.Comment: 6 pages, 2 figure

    The heat capacity of nitrogen chains in grooves of single-walled carbon nanotube bundles

    Get PDF
    The heat capacity of bundles of closed-cap single-walled carbon nanotubes (SWNT) with one-dimensional chains of nitrogen molecules adsorbed in the grooves has been first experimentally studied at temperatures from 2K to 40K using an adiabatic calorimeter. The contribution of nitrogen C(T) to the total heat capacity has been separated. In the region 2-8K the behaviour of the curve C(T) is qualitatively similar to the theoretical prediction of the phonon heat capacity of 1D chains of krypton (Kr) atoms localized in the grooves of SWNT bundles. Below 3K the dependence C(T) is linear. Above 8K the dependence C(T) becomes steeper in comparison with the case of Kr atoms. This behaviour of the heat capacity C(T) is due to the contribution of the rotational degrees of freedom of the nitrogen molecules.Comment: 15 pages, 4 figure

    Radial thermal expansion of single-walled carbon nanotube bundles at low temperatures

    Get PDF
    The linear coefficient of the radial thermal expansion has been measured on a system of SWNT bundles in an interval of 2.2 - 120K. The measurement was performed using a dilatometer with a sensitivity of 2*10-9 cm. The cylindrical sample 7 mm high and 10 mm in diameter was obtained by compressing powder. The resulting bundles of the nanotubes were oriented perpendicular to the sample axis. The starting powder contained over 90% of SWNTs with the outer diameter 1.1 nm, the length varying within 5-30 um.Comment: 4 pages, 1 figur

    Decay and fusion as two different mechanisms of stability loss for the (C_20)_2 cluster dimer

    Full text link
    The thermal stability of the (C_20)_2 cluster dimer consisting of two C_20 fullerenes is examined using a tight-binding approach. Molecular dynamics simulations of the (C_20)_2 dimer at temperatures T = 2000 - 3500 K show that the finite lifetime \tau of this metastable system is determined by two fundamentally different processes, the decay of one of the C_20 fullerenes and the fusion of two C_20 fullerenes into the C_40 cluster. The activation energies for these processes Ea = 3.4 and 2.7 eV, respectively, as well as their frequency factors, have been determined by analyzing the dependence of \tau on T.Comment: Slightly modified version of the paper to appear in JETP Let

    High orders of the perturbation theory for hydrogen atom in magnetic field

    Get PDF
    The states of hydrogen atom with principal quantum number n3n\le3 and zero magnetic quantum number in constant homogeneous magnetic field H{\cal H} are considered. The coefficients of energy eigenvalues expansion up to 75th order in powers of H2{\cal H}^2 are obtained for these states. The series for energy eigenvalues and wave functions are summed up to H{\cal H} values of the order of atomic magnetic field. The calculations are based on generalization of the moment method, which may be used in other cases of the hydrogen atom perturbation by a polynomial in coordinates potential.Comment: 16 pages, LaTeX, 6 figures (ps, eps

    Anomalous Thermal Stability of Metastable C_20 Fullerene

    Full text link
    The results of computer simulation of the dynamics of fullerene C_20 at different temperatures are presented. It is shown that, although it is metastable, this isomer is very stable with respect to the transition to a lower energy configuration and retains its chemical structure under heating to very high temperatures, T ~ 3000 K. Its decay activation energy is found to be E_a ~ 7 eV. Possible decay channels are studied, and the height of the minimum potential barrier to decay is determined to be U = 5.0 eV. The results obtained make it possible to understand the reasons for the anomalous stability of fullerene C_20 under normal conditions.Comment: Slightly corrected version of the paper submitted to Phys. Solid Stat

    1/m_b^2 correction to the left-right lepton polarization asymmetry in the decay B -> X_s mu^+ mu^-

    Full text link
    Using a known result by Falk et al. for the 1/m_b^2 correction to the dilepton invariant mass spectrum in the decay B \rightarrow X_s \mu^+ \mu^-, we calculate the 1/m_b^2 correction to the left-right muon polarization asymmetry in this decay. Employing an up-to-date range of values for the non-perturbative parameter \lambda_1, we find that the correction is much smaller than it should have been expected from the previous work by Falk et al.Comment: 8 pages, 2 figures included. Uses epsf.sty and rotate.sty. To appear in Physical Review D. The complete postscript file is also available from URL ftp://feynman.t30.physik.tu-muenchen.de/pub/preprints/ tum_t31_98_96.ps.g

    Enhancement of fusion rates due to quantum effects in the particles momentum distribution in nonideal media

    Full text link
    This study concerns a situation when measurements of the nonresonant cross-section of nuclear reactions appear highly dependent on the environment in which the particles interact. An appealing example discussed in the paper is the interaction of a deuteron beam with a target of deuterated metal Ta. In these experiments, the reaction cross section for d(d,p)t was shown to be orders of magnitude greater than what the conventional model predicts for the low-energy particles. In this paper we take into account the influence of quantum effects due to the Heisenberg uncertainty principle for particles in a non-ideal medium elastically interacting with the medium particles. In order to calculate the nuclear reaction rate in the non-ideal environment we apply both the Monte Carlo technique and approximate analytical calculation of the Feynman diagram using nonrelativistic kinetic Green's functions in the medium which correspond to the generalized energy and momentum distribution functions of interacting particles. We show a possibility to reduce the 12-fold integral corresponding to this diagram to a fivefold integral. This can significantly speed up the computation and control accuracy. Our calculations show that quantum effects significantly influence reaction rates such as p +7Be, 3He +4He, p +7Li, and 12C +12C. The new reaction rates may be much higher than the classical ones for the interior of the Sun and supernova stars. The possibility to observe the theoretical predictions under laboratory conditions is discussed

    Exclusive Radiative B-Decays in the Light-Cone QCD Sum Rule Approach

    Get PDF
    We carry out a detailed study of exclusive radiative rare BB-decays in the framework of the QCD sum rules on the light cone, which combines the traditional QCD sum rule technique with the description of final state vector mesons in terms of the light-cone wave functions of increasing twist. The decays considered are: Bu,dK+γ,Bu,dρ+γ,Bdω+γB_{u,d} \to K^* +\gamma, B_{u,d}\to \rho+\gamma, B_d\to \omega+\gamma and the corresponding decays of the BsB_s mesons, Bsϕ+γB_s\to \phi+\gamma and BsK+γB_s\to K^*+\gamma. Based on our estimate of the transition form factor F_1^{B \to K^*\pg}(0) =0.32\pm0.05, we find for the branching ratio BR(BK+γ)=(4.8±1.5)×105BR(B \to K^* + \gamma) = (4.8\pm 1.5)\times 10^{-5}, which is in agreement with the observed value measured by the CLEO collaboration. We present detailed estimates for the ratios of the radiative decay form factors, which are then used to predict the rates for the exclusive radiative B-decays listed above. This in principle allows the extraction of the CKM matrix element Vtd|V_{td}| from the penguin-dominated CKM-suppressed radiative decays when they are measured. We give a detailed discussion of the dependence of the form factors on the bb-quark mass and on the momentum transfer, as well as their interrelation with the CKM-suppressed semileptonic decay form factors in Bρ++νB\to \rho+\ell+\nu, which we also calculate in our approach.Comment: 32 pages, 10 uuencoded figures, LaTeX, preprint CERN-TH 7118/9
    corecore