53 research outputs found

    A Bayesian analysis of neutron spin echo data on polymer coated gold nanoparticles in aqueous solutions

    Full text link
    We present a neutron spin echo study (NSE) of the nanosecond dynamics of polyethylene glycol (PEG) functionalised nanosized gold particles dissolved in D2_2O at two temperatures and two different PEG molecular weights. The analysis of the NSE data was performed by applying a Bayesian approach to the description of time correlation function decays in terms of exponential terms, recently proved to be theoretically rigorous. This approach, which addresses in a direct way the fundamental issue of model choice in any dynamical analysis, provides here a guide to the most statistically supported way to follow the decay of the Intermediate Scattering Functions I(Q, t) by basing on statistical grounds the choice of the number of terms required for the description of the nanosecond dynamics of the studied systems. Then, the presented analysis avoids from the start resorting to a pre-selected framework and can be considered as model free. By comparing the results of PEG coated nanoparticles with those obtained in PEG2000 solutions, we were able to disentangle the translational diffusion of the nanoparticles from the internal dynamics of the polymer grafted to them, and to show that the polymer corona relaxation follows a pure exponential decay in agreement with the behavior predicted by coarse grained molecular dynamics simulations and theoretical models. This methodology has one further advantage: in the presence of a complex dynamical scenario I(Q,t) is often described in terms of the Kohlrausch-Williams-Watts function that can implicitly represent a distribution of relaxation times. By choosing to describe the I(Q,t) as a sum of exponential functions and with the support of the Bayesian approach, we can explicitly determine when a finer-structure analysis of the dynamical complexity of the system exists according to the available data without the risk of overparametrisation

    Interpreting the Terahertz Spectrum of Complex Materials: The Unique Contribution of the Bayesian Analysis

    Get PDF
    In the last few decades, experimental studies of the terahertz spectrum of density fluctuations have considerably improved our knowledge of the mesoscopic dynamics of disordered materials, which also have imposed new demands on the data modelling and interpretation. Indeed, lineshape analyses are no longer limited to the phenomenological observation of inelastic features, as in the pioneering stage of Neutron or X-ray spectroscopy, rather aiming at the extraction from their shape of physically relevant quantities, as sound velocity and damping, relaxation times, or other transport coefficients. In this effort, researchers need to face both inherent and practical obstacles, respectively stemming from the highly damped nature of terahertz modes and the limited energy resolution, accessible kinematic region and statistical accuracy of the typical experimental outcome. To properly address these challenges, a global reconsideration of the lineshape modelling and the enforcement of evidence-based probabilistic inference is becoming crucial. Particularly compelling is the possibility of implementing Bayesian inference methods, which we illustrated here through an in-depth discussion of some results recently obtained in the analysis of Neutron and X-ray scattering results

    Ice phonon spectra and Bayes inference: a gateway to a new understanding of terahertz sound propagation in water

    Full text link
    Understanding how molecules engage in collective motions in a liquid where a network of bonds exists has both fundamental and applied relevance. On the one hand, it can elucidate the ``ordering" role of long-range correlations in an otherwise strongly dissipative system; on the other hand, it can inspire new avenues to control such order to implement sound manipulation. Water represents an ideal investigation case to unfold these general aspects and, across the decades, it has been the focus of thorough scrutiny. Despite this investigative effort, the spectrum of terahertz density fluctuations of water largely remains a puzzle for Condensed Matter physicists. To unravel it, we compare previous scattering measurements of water spectra with new ones on ice. Thanks to the unique asset of Bayesian inference, we draw a more detailed portrayal of the phonon response of ice. The comparison with the one of liquid water challenges the current understanding of density fluctuations in water, or more in general, of any networked liquid.Comment: 30 pages, 9 figure

    Mechanisms of Hydrogen Sulfide against the Progression of Severe Alzheimer’s Disease in Transgenic Mice at Different Ages

    Get PDF
    Abstract Backgroud: Alzheimer disease is an age-related severe neurodegenerative pathology. The level of the third endogenous gas, hydrogen sulfide (H2S), is decreased in the brain of Alzheimer’s disease (AD) patients compared with the brain of the age-matched normal individuals; also, plasma H2S levels are negatively correlated with the severity of AD. Recently, we have demonstrated that systemic H2S injections are neuroprotective in an early phase of preclinical AD. Objectives: This study focuses on the possible neuroprotection of a chronic treatment with an H2S donor and sulfurous water (rich of H2S) in a severe transgenic 3×Tg-AD mice model. Method: 3×Tg-AD mice at 2 different ages (6 and 12 months) were daily treated intraperitoneally with an H2S donor and sulfurous water (rich of H2S) for 3 months consecutively. We investigated the cognitive ability, brain morphological alterations, amyloid/tau cascade, excitotoxic, inflammatory and apoptotic responses. Results: Three months of treatments with H2S significantly protected against impairment in learning and memory in a severe 3×Tg-AD mice model, at both ages studied, and reduced the size of Amyloid β plaques with preservation of the morphological picture. This neuroprotection appeared mainly in the cortex and hippocampus, associated with reduction in activity of c-jun N-terminal kinases, extracellular signal-regulated kinases and p38, which have an established role not only in the phosphorylation of tau protein but also in the inflammatory and excitotoxic response. Conclusion: Our findings indicate that appropriate treatments with various sources of H2S, might represent an innovative approach to counteract early and severe AD progression in humans

    The hydrogen-bond collective dynamics in liquid methanol

    Get PDF
    The relatively simple molecular structure of hydrogen-bonded (HB) systems is often belied by their exceptionally complex thermodynamic and microscopic behaviour. For this reason, after a thorough experimental, computational and theoretical scrutiny, the dynamics of molecules in HB systems still eludes a comprehensive understanding. Aiming at shedding some insight into this topic, we jointly used neutron Brillouin scattering and molecular dynamics simulations to probe the dynamics of a prototypical hydrogen-bonded alcohol, liquid methanol. The comparison with the most thoroughly investigated HB system, liquid water, pinpoints common behaviours of their THz microscopic dynamics, thereby providing additional information on the role of HB dynamics in these two systems. This study demonstrates that the dynamic behaviour of methanol is much richer than what so far known, and prompts us to establish striking analogies with the features of liquid and supercooled water. In particular, based on the strong differences between the structural properties of the two systems, our results suggest that the assignment of some dynamical properties to the tetrahedral character of water structure should be questioned. We finally highlight the similarities between the characteristic decay times of the time correlation function, as obtained from our data and the mean lifetime of hydrogen bond known in literature

    Switching off hydrogen-bond-driven excitation modes in liquid methanol

    Get PDF
    Abstract Hydrogen bonding plays an essential role on intermolecular forces, and consequently on the thermodynamics of materials defined by this elusive bonding character. It determines the property of a vital liquid as water as well as many processes crucial for life. The longstanding controversy on the nature of the hydrogen bond (HB) can be settled by looking at the effect of a vanishing HB interaction on the microscopic properties of a given hydrogen-bonded fluid. This task suits the capabilities of computer simulations techniques, which allow to easily switch off HB interactions. We then use molecular dynamics to study the microscopic properties of methanol, a prototypical HB liquid. Fundamental aspects of the dynamics of methanol at room temperature were contextualised only very recently and its rich dynamics was found to have striking analogies with that of water. The lower temperature (200 K) considered in the present study led us to observe that the molecular centre-of-mass dynamics is dominated by four modes. Most importantly, the computational ability to switch on and off hydrogen bonds permitted us to identify which, among these modes, have a pure HB-origin. This clarifies the role of hydrogen bonds in liquid dynamics, disclosing new research opportunities and unexplored interpretation schemes

    The damping of terahertz acoustic modes in aqueous nanoparticle suspensions

    Get PDF
    In this work, we investigate the possibility of controlling the acoustic damping in a liquid when nanoparticles are suspended in it. To shed light on this topic, we performed Inelastic X-Ray Scattering (IXS) measurements of the terahertz collective dynamics of aqueous suspensions of nanospheres of various materials, size, and relative concentration, either charged or neutral. A Bayesian analysis of measured spectra indicates that the damping of the two acoustic modes of water increases upon nanoparticle immersion. This effect seems particularly pronounced for the longitudinal acoustic mode, which, whenever visible at all, rapidly damps off when increasing the exchanged wavevector. Results also indicate that the observed effect strongly depends on the material the immersed nanoparticles are made of
    • …
    corecore