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Time dependence of the velocity autocorrelation function of a fluid:
An eigenmode analysis of dynamical processes
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The velocity autocorrelation function (VAF), a key quantity in the atomic-scale dynamics of fluids, has been
the first paradigmatic example of a long-time tail phenomenon, and much work has been devoted to detecting
such long-lasting correlations and understanding their nature. There is, however, much more to the VAF than
simply the evidence of this long-time dynamics. A unified description of the VAF from very short to long times,
and of the way it changes with varying density, is still missing. Here we show that an approach based on very
general principles makes such a study possible and opens the way to a detailed quantitative characterization
of the dynamical processes involved at all time scales. From the analysis of molecular dynamics simulations
for a slightly supercritical Lennard-Jones fluid at various densities, we are able to evidence the presence of
distinct fast and slow decay channels for the velocity correlation on the time scale set by the collision rate. The
density evolution of these decay processes is also highlighted. The method presented here is very general, and
its application to the VAF can be considered as an important example.
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I. INTRODUCTION

The translational dynamics of fluids is mainly charac-
terized by the two phenomena of diffusion and vibrational
motions, either localized or propagating in form of acoustic
waves [1,2]. Besides self (i.e., single-particle) processes like
mass diffusion, also sound propagation, transverse dynamics,
and other collective phenomena have clear reflections onto
the motions of individual particles [3,4]. Thus, a simply
defined self quantity like the velocity autocorrelation function
(VAF) reflects more or less directly the whole variety of
fluid dynamics, which originates at a microscopic scale but
shows a rather direct connection to macroscopic, measurable
quantities, such as the diffusion coefficient, and the sound
speed and damping. This fact provided good reasons for
studying the VAF, mainly by means of theoretical or simulation
methods [5,6]. However, the most important reason has been
for a long time a phenomenon evidenced by the surprising
findings of Alder and Wainwright [7,8].

These authors detected, in a molecular dynamics (MD)
simulation of a hard-sphere (HS) fluid at intermediate density,
a long-time VAF dependence displaying a characteristic slow
decay, well represented by the power law behavior t−3/2.
This unexpected result was the first appearance of a so-called
long-time tail (LTT) in the microscopic dynamics of fluids. The
effect was explained [8] by assuming that the motion of one
particle creates a vortex around it which, at a later time, pushes
forward the particle in the initial direction, thereby effectively
favoring the persistence of the velocity autocorrelation. A
simulation of hard disks (HD) supported this explanation
through the direct visualization of the velocity field of the
surrounding particles, which showed a rotary character [8].
In this way, a coupling of the self motion with many-particle
dynamics was introduced.
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Soon after the Alder and Wainwright discovery, a number
of works were devoted to the purpose of putting this finding
onto a theoretical base. Papers by various authors [9–11] used
hydrodynamic arguments to arrive at a formulation of the LTT
behavior in terms of the power law expression A t−n/2 for
an n-dimensional system. This result was obtained without
specific assumptions on the interaction potential, therefore its
validity is not limited to the hard-sphere case.

A different kind of approach was followed by exploiting
kinetic theory for HS and HD fluids to account for sequences
of the so-called correlated ring collisions [12]. The same power
law behavior as before was obtained in the limit of vanishing
wave vectors where the medium is viewed as a continuum.
Moreover, both theories also provide the same expression for
the amplitude coefficient A (see below).

The results of the two theories differ in that the former
derives the t−n/2 dependence as representing the asymptotic
time behavior of the VAF, while in the latter there is no claim
of such a property. Actually, in Ref. [12] it is remarked that,
if higher-order terms are taken in an iterative calculation of
the VAF, time dependencies other than t−n/2 appear at longer
times than those that can be usually accessed by MD.

Further simulation studies have concerned model fluids
interacting with continuous potentials, in various thermody-
namic conditions, aiming at an unambiguous assessment of the
LTT [13–20]. In fact, the effect of the mechanisms assumed
to lie at the basis of the LTT makes it not observable under
all conditions. For example, in too dilute gases the vortex
formation may not be sustained, while at high density other
dynamical effects, such as backscattering due to the bouncing
of atoms off near neighbors, may become dominant and mask
the LTT [14].

In summary, a power-law decay has been established for
various model fluids in at least a range of their thermody-
namical states, although debated through confirmations and
refutations, as clearly recalled in Ref. [15]. In particular, a
recent two-dimensional HD simulation performed on a very
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large system [19] has shown clear deviations of the VAF from
the t−1 decay predicted by theory for a 2D system. This result
casts some doubt on the validity of the power law as the
asymptotic time dependence also in real fluids.

The relevance of the VAF is, however, far from being
confined to its very-long-time behavior. The initial decay was
also studied, mostly by looking for an appropriate modeling of
a memory function to be inserted into a generalized Langevin
equation [2,5]. This memory function was assumed to include
two parts: one accounting for fast relaxation through binary
collisions, the other collectively describing slower decay
processes related to sequences of correlated (i.e., nonbinary)
collisions. The latter processes display a more collective
character than the binary collision mechanism [2] and are
expected to eventually merge into the LTT phenomenon.

The relative strengths of the various processes responsible
for the VAF decay clearly depend on the thermodynamical state
of the fluid, and their change is reflected by the accompanying
changes in the shape of the VAF. Thus, one would ultimately
aim at a well-founded approach to the VAF analysis covering
the whole time range from zero up to the longest time for
which a VAF can be determined, including the LTT range if
detected, and in the whole fluid-state (ρ,T ) space.

In this paper, we pursue this goal by applying a substantially
different method, not attempted so far. This is based on a
recently presented general theory [21–23] that describes the
time dependence of any correlation function of dynamical
variables in many-particle Hamiltonian systems as an infinite
series of (complex and/or real) exponentials. This theoretical
approach, which does not resort to any a priori hypotheses
on what dynamical regimes occur in the fluid, also applies
naturally to the VAF and evidently opens an interesting issue
with respect to the current schemes of interpretation.

We have performed a series of MD simulations of a
Lennard-Jones (LJ) fluid, checking for the existence of a t−3/2

LTT in a limited time range, as reported in Sec. II, and then
analyzing the full VAF in terms of the theory just mentioned
(Sec. III). The results are presented and discussed in Sec. IV,
and the conclusions are summarized in Sec. V.

II. SIMULATIONS

We have carried out MD simulations along the slightly
supercritical T ∗ = 1.35 isotherm of the LJ (12-6) fluid. (As
usual, variables marked by an asterisk denote reduced quanti-
ties made dimensionless by appropriate combinations of the LJ
energy and length parameters ε and σ and the atomic mass m;
thus, T ∗ = kBT/ε, with kB the Boltzmann constant.) The seven
simulated densities (ρ∗ = ρσ 3 = 0.30, 0.35, 0.40,. . ., 0.60),
ranging from the critical one to a value about halfway between
the critical and the triple point density, were chosen because
we expected that such a medium-density gas would exhibit a
clearly discernible LTT in the correlation function. In fact, for
our lowest density state, a very careful study [15] has already
given evidence of a t−3/2 LTT. Therefore, we have chosen to
work with the same sample size of N = 10 976 particles (at all
densities) and to use a rather large force cutoff of rc = 6.5σ ,
in order to be fully consistent with Ref. [15].

To maintain the system at the required temperature, we
have employed a Gaussian thermostat [24]. The results of
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FIG. 1. (Color online) Z(t∗) from simulation (black solid lines) is
plotted for t∗ � 0.5 showing its approach to the (t∗)−3/2 behavior (red
straight lines in the log-log scale). The curves are plotted in order of
increasing density from top (ρ∗ = 0.30) to bottom (ρ∗ = 0.60), and
for clarity each curve is shifted downwards by a factor of 10 with
respect to the preceding one. The vertical bars mark the values of t∗

1

(blue), t∗
2 (pink), and t∗

R (green). See text for details.

an isokinetic simulation have been checked to be consistent
with the correlation function obtained in the microcanonical
ensemble. The equations of motion were integrated by means
of the simple leapfrog algorithm in the formulation of Brown
and Clarke [25] with a timestep of �t∗ = 0.001. Here, t∗

denotes the reduced time t∗ = t/
√

mσ 2/ε. To speed up the
calculation of the forces, link cells and neighborhood tables
were used [26].

At each thermodynamic state we have performed ten
independent runs of 107 time steps each. We calculated the
normalized velocity autocorrelation function

Z(t) = 〈v(0) · v(t)〉
〈v(0)2〉 , (1)

where v(t) is the velocity of a particle at time t and 〈· · · 〉
includes an average over all N particles. Z(t) was computed on
a grid with spacing 5�t∗ = 0.005 from zero up to a maximum
time lag of t∗ = 20. The ten individual correlation functions
were then averaged to provide, for each t∗, a mean value of
the VAF at that time lag, as well as the standard error of the
mean, which could be used as a measure of uncertainty in the
subsequent fitting procedures. For all thermodynamic states
considered here, Z(t) is shown in Fig. 1 as a function of the
reduced time t∗.

It is well known [1,26,27] that the use of periodic boundary
conditions may introduce distortions into correlation func-
tions, depending on the size of the simulation box, for time
lags greater than the so-called recurrence time. The latter is
usually taken to be the time tR it takes a density fluctuation
to propagate over a distance equal to the box length traveling
at the speed of sound cs, i.e., tR = (N/ρ)1/3/cs, for a cubical
box. Reduced values of tR, calculated using sound speed data
from Refs. [28,29], are reported in Table I. They agree well
with values obtained from the determination of cs in Ref. [30].
We also displayed tR in Fig. 1, where the recurrence problem
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TABLE I. Reduced recurrence time for the simulations, Enskog mean time between collisions for equivalent hard spheres, and values, in
units of τE, of the time range limits where the A t−3/2 behavior is an appropriate representation of the VAF data. In the last two lines the reduced
diffusion coefficients from this work and from Ref. [30] are compared.

ρ∗ 0.30 0.35 0.40 0.45 0.50 0.55 0.60

t∗
R 23.0 20.2 17.3 14.3 11.5 9.3 7.5
τE 0.263 0.208 0.168 0.137 0.112 0.093 0.077
t1/τE 43 53 45 44 40 38 26
t2/τE 67 82 84 84 98 97 97
D∗ (this work) 0.615 0.513 0.434 0.369 0.313 0.266 0.224
D∗ (from Ref. [30]) 0.612 0.516 0.432 0.365 0.308 0.260 0.220

manifests itself in a reduction of the VAF intensity at the
end of the reported time range. Actually, the recurrence time
tR slightly overestimates the time where problems with the
simulation begin to show up, but this effect tends to diminish
with increasing density.

We performed a two-parameter fit of the function A t−p to
the tail of Z(t) data in variable time windows, and for each
density we determined empirically the widest interval t1 � t �
t2 within which the values of A, p, and the reduced χ2 were
constant. The values of t1 and t2, also shown in Fig. 1, appear
consistent with what one would choose by visual inspection.
The fitted p was fluctuating around an average of 1.500 ±
0.005 without any density trend. Then, a new fit with p fixed
at 3/2 gave, at each density, a best choice for A. We used these
values in Fig. 1 to draw the power-law dependence.

In Fig. 2 we compare the fitted values of A with the
theoretical predictions for the LTT. As said, all theories already
quoted [10–12] provide the same expression, given by [2]

A = 1

12ρ[π (D + ν)]3/2
, (2)

where D is the self-diffusion coefficient, and ν = η/(mρ) and
η are the kinematic and shear viscosities, respectively. We
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FIG. 2. (Color online) Amplitude A∗ of the power-law behavior.
The theoretical values (red triangles), calculated via Eq. (2), are
shown together with those obtained from fitting the function A t−3/2

to the VAF data in the range t1 � t � t2 (see text). Error bars for the
theoretical values are estimated from the uncertainties in the quantities
D and ν. The errors on the fitted points are within the symbol size.

estimated D from the time integral of the VAF [1,2], obtaining
the values reported in Table I, where they can be compared with
those of Ref. [30]. Taking also η from Ref. [16], we used Eq. (2)
to calculate A in good agreement with the fitted amplitude,
especially at the higher densities. The slight discrepancy at
lower densities might be due to the fact that the fit range
t1 � t � t2 shrinks with decreasing density.

Characteristic times of the various processes involved will
be measured in units of “collision times,” since all dynamical
effects are ultimately determined by repeated collisions be-
tween particles, which become more frequent the higher the
density. As a reference collision time it is customary to take
the Enskog mean free time τE of a corresponding HS fluid, the
only system where such a quantity can be rigorously defined.
For hard spheres of diameter σ , the Enskog kinetic theory
predicts a mean time between collisions given by [5]

τE = 1

4ρσ 2g(σ )

√
m

πkBT
. (3)

Here an approximate expression for the contact value of
the pair distribution function g(r) may be obtained from the
Carnahan-Starling equation of state for hard spheres [1]:

g(σ ) = 1 − πρσ 3/12

(1 − πρσ 3/6)3
. (4)

We have inserted the LJ densities into the above formulas
to get the values for τE listed in Table I. In the same table
is also shown that the ratios t1/τE and t2/τE are only weakly
dependent on density and correspond, respectively, to 30–50
and 70–100 collisions, confirming the multicollisional origin
of the LTT.

III. MULTIEXPONENTIAL ANALYSIS

While in the previous Section we have confirmed that the
t−3/2 law is a good LTT representation in the cases studied
here, the goal of this work is to obtain a full account of the
whole VAF time dependence starting at t = 0, since no such
result is available yet.

We follow the theoretical approach recently presented
[21–23], which states that the generalized Langevin equation
for a normalized autocorrelation function C(t) of a classical
many-body system has an exact solution written as an infinite
sum of exponential functions (we need to consider positive t
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only, as C(t) is an even function), i.e.,

C(t) =
∞∑

j=1

Ij exp(zj t), (5)

where Ij and zj are mode amplitudes and frequencies,
respectively, in an inherent eigenmode decomposition. Such
modes can be associated to relaxation channels in the system. If
Ij and zj are complex quantities, the corresponding mode and
its complex conjugate are both present in the series and, taken
together, they represent an exponentially damped oscillation.
Otherwise, real Ij and zj define a purely exponential decay.
In all cases, the real part of zj is negative ensuring the decay
to zero of C(t) in the t → ∞ limit. The zero-time properties
of C(t) and the frequency moments of the spectrum Ĉ(ω),
obtained by Fourier transformation of Eq. (5), are linked by
the relationship

(
dkC(t)

dtk

)
t=0

= ik〈ωk〉 ≡ ik
∫ ∞

−∞
dω ωk Ĉ(ω). (6)

Since in a system of classical particles interacting with a
continuous potential any nonpathological correlation function
is even in time and infinitely often differentiable at t = 0,
Eq. (6) implies that 〈ωk〉 is zero for all odd k and has finite
values for all even k, and also that Ij and zj satisfy, for k � 0,
a set of sum rules of the form

∞∑
j=1

Ij z
k
j = ik〈ωk〉. (7)

Specific models for the autocorrelation C(t) of a dynamical
variable are obtained as approximations of Eq. (5) through
truncation of the infinite series. In Ref. [21] we have shown
that the approximation involved is related to the accuracy of
the description of the time evolution of the dynamical variable.
When a finite number of exponential terms is retained, Eqs. (6)
and (7) can only be valid for k up to a certain value depending
on the approximation level and the model assumed.

Thus, besides being the rigorous solution to the evolution
of C(t), Eq. (5) has also the merit of permitting the explicit
control of the approximation involved in setting up a specific
model for C(t). This is done through a convenient choice of
the number of exponential terms to be retained, depending on
the extension and accuracy of available data, and on the need
to avoid a statistically meaningless overparametrization of the
fitting function. Moreover, apart from the trivial normalization
condition

∑
j Ij = 1 (obtained from Eq. (5) for t = 0), the fit

parameters can also be constrained to obey a certain number
of sum rules

∑
j Ij z

k
j = 0 for odd k, each of them ensuring

the finiteness of the spectral moment 〈ωk+1〉 [31].
In the whole range 0 � t � t2 of our reliable LJ data, a

remarkably accurate description of the VAF is obtained with
two pairs of complex conjugate exponentials and four real
exponentials. We have checked that, at all thermodynamical
states investigated, this set of exponential terms is the smallest
one to be kept in Eq. (5) in order to provide the required
accuracy of the fit, which means that, if one wants to avoid
an unjustified overparametrization of the fit function, this is
univocally determined.

We have specified four constraints provided by the sum
rules Eq. (7) with k = 0,1,3,5. From the computational point
of view, the fitting of the multiexponential model described
in the text is performed by means of a program run in the
Matlab [32] environment, where the core least-squares-fit
calculation is carried out by a built-in Levenberg-Marquardt-
type minimization routine. Weights defined via the statistical
uncertainties evaluated in the VAF computation are used for
the definition of the χ2 to be minimized. The implementation
of the sum rule constraints is performed by applying linear
algebra routines to the solution of the system of equations that
give the nonfitted parameters in terms of the fitted ones.

Imposing the constraints indicated before does not merely
provide a useful reduction in the number of free-fit parameters,
but also renders the model used here a much more accurate
description of the VAF and its spectrum than it is customarily
obtained. We are not aware, in fact, of any study of dynamical
spectra where the finiteness of the sixth frequency moment
was imposed (through the sum rule Eq. (7) with k = 5).

The reason why we do not enforce any sum rules with
even k (apart from the normalization condition) is that the
corresponding zero-time derivatives of the autocorrelation
function are, in general, unknown. In the case of the VAF,
for example, the computation of the fourth derivative of Z(t)
at t = 0 requires the knowledge of the three-body distribution
function g3(r12, r13), and higher-order derivatives have even
more involved expressions [33]. However, for the second
derivative of Z(t), the theoretical expression at t = 0 is easy
to calculate and can be compared to the result obtained from
the fit in order to provide a consistency check of our analysis,
as done in the next section.

IV. RESULTS AND DISCUSSION

A first check of the consistency of the applied fit function
is its fulfillment of the k = 2 sum rule. The VAF has the
well-known short time expansion in even powers of t [2,5],

Z(t) = 1 − �2
0
t2

2
+ . . . , (8)

where

�2
0 = ρ

3m

∫
d r∇2φ(r) g(r). (9)

Here �0 is the so-called Einstein frequency, and φ(r) is the
interaction potential. For the LJ case this reads

�2
0 = 32πρε

m

∫ ∞

0
dr g(r)

[
22

(σ

r

)12
− 5

(σ

r

)6
]
, (10)

which we calculated using the results of g(r) simulations at the
various densities. On the other hand, by combining Eqs. (7)
and (6), one obtains

�2
0 =

∞∑
j=1

Ij z
2
j . (11)

Putting in this sum the finite number of terms used in our fit
function, �0 can be evaluated from the fitted Ij and zj . The
two values of �2

0 obtained from Eqs. (10) and (11) agree within
2% at ρ∗ = 0.30 and better than 1% at all higher densities.
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FIG. 3. (Color online) The simulated Z(t∗) is displayed (symbols) for the three indicated densities together with the multiexponential fit
described in the text (red solid line through the data points). In the left frames [(a)–(c)], referring to short times, the various components of the
fit function are also displayed separately according to the legend given in the top panel. R1 to R4 denote the real exponential terms ordered by
increasing decay time. C1 is the sum of the two complex conjugate exponentials of the first pair, amounting to a damped oscillatory function.
C2 is the analogous quantity for the second pair of complex terms. R3, R4, and C1 are hardly visible on the scale of the figures. In the right
panels [(d)–(f)], covering the remaining time range up to t∗

2 , only the real terms are shown while C1 and C2 have already decayed to zero. For
graphical clarity, not all available data points have been displayed.

Figure 3 shows that the multiexponential fit curves agree
perfectly with the VAF data at all densities. In particular, for
times between t1 and t2 the fit residuals are at least as small
as in a fit with the power law. The various components of
the fit model are also shown in Fig. 3 for a more detailed
understanding of the results.

The oscillatory modes (labeled C1 and C2) are strongly
damped and one of them (C1) is characterized by a very
low intensity. These modes and the two faster decaying real
exponentials (R1 and R2) mainly determine the VAF behavior
at short and intermediate times, respectively. The role of the
slower decaying exponentials (R3 and R4) can instead be better
appreciated at the larger times displayed in the right panels of
the figure. Notably, the LTT range (t � t1) is described by
the R3 and, predominantly, R4 terms. The latter, however,
is apparently characterized by a time constant much longer

than the other modes, suggesting the onset of a different
(hydrodynamic-like) regime for the fluid. With increasing
density, the short-time oscillatory mode progressively grows
in importance with respect to the two fast decaying real modes
R1 and R2. This is suggestive of the onset of bouncing effects
in cages surrounding a given atom, which are typical of a
dense liquid but may here be already beginning to form as
the packing fraction grows. Moreover, the intensity of R4 also
increases with density, in agreement with an earlier occurrence
of hydrodynamic conditions and with the greater values of
Z(t1) at higher densities, which shows the growing importance
of the LTT contribution to the VAF and its integral, which is
connected to the diffusion constant.

The fact that two exponential terms (R3 and R4) provide
an accurate representation of the MD data for t1 � t � t2,
i.e., in the same range where the algebraic t−3/2 dependence
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is detected, should not appear as a contradiction. Of course,
this is not an absurd claim that the sum of two exponentials
amounts to an algebraic function, but simply the statement that
the two representations can only be assessed in the comparison
with data of a given finite precision. In this respect, we already
noted that in the above quoted range the multiexponential fit
is at least as good as the t−3/2 one.

It is intrinsic to the theory that the VAF decays by
superposition of effects that can be identified with relaxation
channels of different nature. Here we learn, however, that these
channels are limited in number to a few, and still fewer of them
are sufficient to account for the LTT. Moreover, it is a natural
consequence of the theory that, if VAF data were obtainable
in a significantly wider range, additional slower-decay modes
should eventually be added to the model and that these would
account for contributions to the VAF of lesser and lesser
intensity and located in the very far tail.

Turning to the quantitative analysis of fit results, we write
zj = −1/τj or zj = (−1/τj ) + iωj for a real or complex
mode, respectively, and, by considering the scaled quantities
τj /τE for the time decays and ωjτE for the complex mode
oscillation frequencies, we are able to estimate the number
of collisions involved in the loss of correlation brought
about by the various processes related to each fitted mode
in Eq. (5). Figure 4(a) shows the density dependence of
τ/τE. The oscillatory modes have the shortest decay times,
which, together with that of R1, are less than, or of the order
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FIG. 4. (Color online) Parameters of the exponential fit. (a) De-
cay times τj of the fitted exponentials in units of τE as functions of
density. The various modes are identified by labels as described in the
caption of Fig. 3. (b) The product ωjτE is shown for the two complex
modes.

of, one collision time. R2 is also a relatively fast process
related to a very small number of collisions. These modes
correspond qualitatively to the mentioned binary collision
components. There also appears a mode (R3) with τ/τE of
the order of ten. This intermediate value denotes a process
where more collisions are involved but still not in such a
number as to suggest a truly cooperative damping mechanism.
However, the most striking result is the great gap between
the first three real modes and the fourth one (R4), which
has a decay time of the order of 60 collisions, revealing
its true multiparticle, collective origin. These observations
are quantitative confirmations of the Alder and Wainwright
findings, but also show that the loss of velocity correlation is
a consequence of more than one relaxation process, ranging
from the single-collision fast processes R1, C1, and C2 to the
slow, hydrodynamic-like one, R4.

A clear difference is also evident in the density dependence,
which is appreciable for the oscillatory modes but hardly
detectable for the decaying ones on the logarithmic scale
of Fig. 4(a). This can be interpreted by noting that the
exponential decays R1 to R4 already offer a range of values
broad enough to account for possible density effects; on the
contrary, the oscillatory components are only two and need to
adapt themselves to the change of damping condition brought
about by a growing density.

Figure 4(b) shows that the oscillation frequencies of the
complex modes confirm both their fast nature and their greater
sensitivity to density changes. It is worthwhile to note that all
parameters plotted in Fig. 4 display a smooth dependence on
density.

As already visible in Fig. 3, the slowly decaying real
exponentials R3 and R4 have very small intensities. However,
they account for the total VAF in the very important long-time
range where all other terms have already fully decayed to zero.
In Fig. 5, which displays the mode intensities as functions of
density, it is seen that (i) C2 and R1 are the most intense

0.3 0.4 0.5 0.6

0.0

0.2

0.4

0.6

0.8

I

ρ* 

R2 
R1 

C2 

FIG. 5. (Color online) Amplitudes I of the fitted modes as
functions of density. The three most intense modes are shown as
symbols and identified by the same labels as in Fig. 4. The other
modes have amplitudes too small to be clearly distinguishable on the
scale of the figure and are displayed as continuous lines through the
points, for graphical reasons. For the complex modes the amplitudes
of the sums of each pair of complex conjugate terms, given by 2ReI ,
are shown.
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TABLE II. Percent contribution, of the fitted modes grouped as
shown in the first column, to the integral of the VAF. The numbers in
each column add up to 100 percent.

ρ∗ 0.30 0.35 0.40 0.45 0.50 0.55 0.60

C1 + C2 7.81 10.64 14.28 18.56 23.63 30.12 34.14
R1 + R2 81.04 78.09 73.85 68.22 62.93 50.77 44.49
R3 + R4 11.14 11.27 11.87 13.21 13.44 19.11 21.38

modes, followed by R2, but (ii) the density dependence
clearly suggests that the oscillating mode gains intensity at
the expenses of the fastest decaying real exponential one.

More insight into the effects of increasing density is gained
by considering the relative weights wj = (Ij /zj )/

∑
h(Ih/zh)

of the various modes defined as their fractional contribution to
the integral of the VAF. In order to present the density trends in
a simpler but more effective way, in Table II we combined the
modes into three groups consisting of the complex modes,
the two faster real ones, and the two slower ones. The
interpretation of Table II is straightforward. By moving toward
dense fluid conditions, the slow modes play an increasing
role to account for the hydrodynamic-like behavior, which is
also responsible for the emergence of the LTT. On the other
hand, for the fast modes (C1 + C2 and R1 + R2), essentially
governed by single-collision processes, one observes a shift
toward a progressively stronger oscillatory nature in parallel
with the formation of better structured nearest-neighbor cages.
This is the same phenomenon that, when the density of the
liquid state is reached, will have increased to the point of
making the total VAF display a negative part.

V. CONCLUSION

We have shown that the multiexponential representation
of correlation functions applies perfectly, with only a small
number of terms, to the description, up to very large times,
of the VAF of a supercritical LJ fluid. A collisional analysis,
together with its density evolution, allowed us to distinguish
the nature of the mechanisms contributing to diffusion and
the ultimate loss of velocity correlation. The long-discussed

concepts of “binary” (i.e., fast) and “nonbinary” (i.e., slower)
processes intervening in the VAF time dependence are found
to correspond directly to decay channels whose intensities
and lifetimes can be measured. Moreover, when these modes
possess an oscillatory character, their frequencies are also
obtained from the analysis in a natural way.

The presence of a very slow process, with a decay time
much longer than that of the other modes and measured on the
scale of several tens of collision times, shows that the analysis
here performed is consistent with the originally proposed
interpretation of the LLT, but, at the same time, provides a
unified description of all dynamical properties reflected in the
time evolution of the single-atom velocity correlation.

The application of the theoretical treatment of
Refs. [21–23] to the VAF case allows for a method of
interpreting Z(t) data quite different and much more far-
reaching than the one limiting the analysis to the assessment
of an LTT. However, given the generality of the theoretical
results as far as their field of application is concerned, the
work presented here can also be considered as a meaningful
illustration of a method of analysis that can be extended to a
variety of time correlation and spectral data of interest in many
fields of matter physics.

For example, from the expression of a correlation function
as a series of exponential functions, it follows that the
corresponding Green-Kubo integral also gives a transport
coefficient in the form of a series. Besides being a nice
result “per se,” this means that, once the parameters of the
exponentials are fitted to good data, the calculation of the
corresponding transport coefficient is also obtained. A similar
approach is exploited in Ref. [34], where extrapolation to
infinite time of the Green-Kubo integrand is performed by
means of a fitted function empirically modeled as a double
exponential. Our method could be applied to put these analyses
on a rigorous base.
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