5 research outputs found

    New advances in metabolic syndrome, from prevention to treatment. The role of diet and food

    Get PDF
    The definition of metabolic syndrome (MetS) has undergone several changes over the years due to the difficulty in establishing universal criteria for it. Underlying the disorders related to MetS is almost invariably a pro-inflammatory state related to altered glucose metabolism, which could lead to elevated cardiovascular risk. Indeed, the complications closely related to MetS are cardiovascular diseases (CVDs) and type 2 diabetes (T2D). It has been observed that the predisposition to metabolic syndrome is modulated by complex interactions between human microbiota, genetic factors, and diet. This review provides a summary of the last decade of literature related to three principal aspects of MetS: (i) the syndrome’s definition and classification, pathophysiology, and treatment approaches; (ii) prediction and diagnosis underlying the biomarkers identified by means of advanced methodologies (NMR, LC/GC-MS, and LC, LC-MS); and (iii) the role of foods and food components in prevention and/or treatment of MetS, demonstrating a possible role of specific foods intake in the development of MetS

    Co-option of Neutrophil Fates by Tissue Environments.

    Get PDF
    Classically considered short-lived and purely defensive leukocytes, neutrophils are unique in their fast and moldable response to stimulation. This plastic behavior may underlie variable and even antagonistic functions during inflammation or cancer, yet the full spectrum of neutrophil properties as they enter healthy tissues remains unexplored. Using a new model to track neutrophil fates, we found short but variable lifetimes across multiple tissues. Through analysis of the receptor, transcriptional, and chromatin accessibility landscapes, we identify varying neutrophil states and assign non-canonical functions, including vascular repair and hematopoietic homeostasis. Accordingly, depletion of neutrophils compromised angiogenesis during early age, genotoxic injury, and viral infection, and impaired hematopoietic recovery after irradiation. Neutrophils acquired these properties in target tissues, a process that, in the lungs, occurred in CXCL12-rich areas and relied on CXCR4. Our results reveal that tissues co-opt neutrophils en route for elimination to induce programs that support their physiological demands.This study was supported byIntramural grants from the Severo Ochoa program (IGP-SO), a grant from Fundacio la Marato de TV3 (120/C/2015-20153032), grant SAF2015-65607-R fromMinisterio de Ciencia e Innovacion (MICINN) with co-funding by Fondo Eu-ropeo de Desarrollo Regional (FEDER), RTI2018-095497-B-I00 from MICINN,HR17_00527 from Fundacion La Caixa, and Transatlantic Network of Excel-lence (TNE-18CVD04) from the Leducq Foundation to A.H. I.B. is supportedby fellowship MSCA-IF-EF-748381 and EMBO short-term fellowship 8261.A.R.-P. is supported by a fellowship (BES-2016-076635) and J.A.N.-A. byfellowship SVP-2014-068595 from MICINN. R.O. is supported by ERC startinggrant 759532, Italian Telethon Foundation SR-Tiget grant award F04, ItalianMoH grant GR-201602362156, AIRC MFAG 20247, Cariplo Foundation grant2015-0990, and the EU Infect-ERA 126. C.S. is supported by the SFB 1123,project A07, as well as by the DZHK (German Centre for Cardiovascular Research) and the BMBF (German Ministry of Education and Research) grant81Z0600204. L.G.N. is supported by SIgN core funding from A*STAR. The CNIC is supported by the MICINN and the Pro-CNIC Foundation and is a Severo Ochoa Center of Excellence (MICINN award SEV-2015-0505). G.F.-C. issupported by the Spanish Ministerio de Ciencia e Innovacio ́n (grantPID2019-110895RB-100) and Junta de Comunidades de Castilla-La Mancha(grant SBPLY/19/180501/000211). C.R. received funding from the BoehingerIngelheim Foundation (consortium grant ‘‘Novel and Neglected CardiovascularRisk Factors’’) and German Federal Ministry of Education and Research(BMBF 01EO1503) and is a Fellow of the Gutenberg Research College (GFK)at the Johannes Gutenberg-University MainzS

    New Advances in Metabolic Syndrome, from Prevention to Treatment: The Role of Diet and Food

    No full text
    The definition of metabolic syndrome (MetS) has undergone several changes over the years due to the difficulty in establishing universal criteria for it. Underlying the disorders related to MetS is almost invariably a pro-inflammatory state related to altered glucose metabolism, which could lead to elevated cardiovascular risk. Indeed, the complications closely related to MetS are cardiovascular diseases (CVDs) and type 2 diabetes (T2D). It has been observed that the predisposition to metabolic syndrome is modulated by complex interactions between human microbiota, genetic factors, and diet. This review provides a summary of the last decade of literature related to three principal aspects of MetS: (i) the syndrome’s definition and classification, pathophysiology, and treatment approaches; (ii) prediction and diagnosis underlying the biomarkers identified by means of advanced methodologies (NMR, LC/GC-MS, and LC, LC-MS); and (iii) the role of foods and food components in prevention and/or treatment of MetS, demonstrating a possible role of specific foods intake in the development of MetS

    IL-1β+ macrophages fuel pathogenic inflammation in pancreatic cancer

    No full text
    : Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with high resistance to therapies1. Inflammatory and immunomodulatory signals co-exist in the pancreatic tumour microenvironment, leading to dysregulated repair and cytotoxic responses. Tumour-associated macrophages (TAMs) have key roles in PDAC2, but their diversity has prevented therapeutic exploitation. Here we combined single-cell and spatial genomics with functional experiments to unravel macrophage functions in pancreatic cancer. We uncovered an inflammatory loop between tumour cells and interleukin-1β (IL-1β)-expressing TAMs, a subset of macrophages elicited by a local synergy between prostaglandin E2 (PGE2) and tumour necrosis factor (TNF). Physical proximity with IL-1β+ TAMs was associated with inflammatory reprogramming and acquisition of pathogenic properties by a subset of PDAC cells. This occurrence was an early event in pancreatic tumorigenesis and led to persistent transcriptional changes associated with disease progression and poor outcomes for patients. Blocking PGE2 or IL-1β activity elicited TAM reprogramming and antagonized tumour cell-intrinsic and -extrinsic inflammation, leading to PDAC control in vivo. Targeting the PGE2-IL-1β axis may enable preventive or therapeutic strategies for reprogramming of immune dynamics in pancreatic cancer

    Cellular and transcriptional dynamics of human neutrophils at steady state and upon stress

    Get PDF
    Traditionally viewed as poorly plastic, neutrophils are now recognized as functionally diverse. However, the extent and determinants of neutrophil heterogeneity in humans remain unclear. We performed a comprehensive immunophenotypic and transcriptome analysis, at bulk and single-cell level, of neutrophils from healthy donors and patients undergoing stress myelopoiesis upon exposure to growth factors, transplantation of hematopoietic stem cells (HSC-T), development of pancreatic cancer, and viral infection. We uncover an extreme diversity of human neutrophils in vivo, reflecting the rates of cell mobilization, differentiation, and exposure to environmental signals. Integrated control of developmental and inducible transcriptional programs linked flexible granulopoietic outputs with elicitation of context-dependent functional responses. In this context, we detected an acute interferon (IFN) response in the blood of HSC-T patients that was mirrored by marked upregulation of IFN-stimulated genes in neutrophils but not in monocytes. Systematic characterization of human neutrophil plasticity may uncover clinically relevant biomarkers and support the development of diagnostic and therapeutic tools
    corecore