4 research outputs found

    Magnetic order and phase transitions in Fe 50_{50} Pt 50–x_{50– x} Rh x_{x}

    No full text
    Polarized and unpolarized neutron diffraction techniques have been applied to study the temperature-dependent magnetic and structural properties of four 200 nm-thick Fe50Pt50-xRhx films with x = 5, x = 10, x = 17.5 and x = 25. Similar to the bulk system, an antiferromagnetic to ferromagnetic transition can be found in the films with decreasing Rh concentration. The application of structure factor calculations enables one to determine the microscopic magnetic configuration of the different films as a function of temperature and Rh concentration. The developed models indicate a magnetic transition from a dominant antiferromagnetic order in the out-of-plane direction to a dominant ferromagnetic order in the in-plane direction with decreasing Rh concentration. The different magnetic configurations can theoretically be described by a phenomenological model which includes a two-ion and a one-ion interaction Hamiltonian term with different temperature dependencies of the anisotropy constants

    Complex Three-Dimensional Magnetic Ordering in Segmented Nanowire Arrays

    No full text
    A comprehensive three-dimensional picture of magnetic ordering in high-density arrays of segmented FeGa/Cu nanowires is experimentally realized through the application of polarized small-angle neutron scattering. The competing energetics of dipolar interactions, shape anisotropy, and Zeeman energy in concert stabilize a highly tunable spin structure that depends heavily on the applied field and sample geometry. Consequently, we observe ferromagnetic and antiferromagnetic interactions both among wires and between segments within individual wires. The resulting magnetic structure for our nanowire sample in a low field is a fan with magnetization perpendicular to the wire axis that aligns nearly antiparallel from one segment to the next along the wire axis. Additionally, while the low-field interwire coupling is ferromagnetic, application of a field tips the moments toward the nanowire axis, resulting in highly frustrated antiferromagnetic stripe patterns in the hexagonal nanowire lattice. Theoretical calculations confirm these observations, providing insight into the competing interactions and resulting stability windows for a variety of ordered magnetic structures. These results provide a roadmap for designing high-density magnetic nanowire arrays for spintronic device applications
    corecore