429 research outputs found

    Mild to moderate bleeding: diagnostic and therapeutic paths

    Get PDF
    We consider mild to moderate bleedings all bleeding events that do not meet the criteria proposed by the International Society of Thrombosis and Haemostasis (ISTH) for the definition of major bleeding. As regards the approach to the bleeding patient, the first step is undoubtedly an accurate collection of clinical history and overall physical examination. Then, the etiological diagnosis of a bleeding disorder uses a series of laboratory investigations, divided into first level tests, which are intended to identify the altered phase of the hemostatic process, and second level ones, i.e. more specific tests used if screening tests are negative or to better characterize the alteration identified by them. For the treatment of a bleeding disorder there are several approaches, all strictly dependent on the etiologic diagnosis of this disorder

    T Cells in Gastric Cancer: Friends or Foes

    Get PDF
    Gastric cancer is the second cause of cancer-related deaths worldwide. Helicobacter pylori is the major risk factor for gastric cancer. As for any type of cancer, T cells are crucial for recognition and elimination of gastric tumor cells. Unfortunately T cells, instead of protecting from the onset of cancer, can contribute to oncogenesis. Herein we review the different types, “friend or foe”, of T-cell response in gastric cancer

    Peroxisome Proliferator-Activated Receptor Delta: A Conserved Director of Lipid Homeostasis through Regulation of the Oxidative Capacity of Muscle

    Get PDF
    The peroxisome proliferator-activated receptors (PPARs), which are ligand-inducible transcription factors expressed in a variety of tissues, have been shown to perform key roles in lipid homeostasis. In physiological situations such as fasting and physical exercise, one PPAR subtype, PPARδ, triggers a transcriptional program in skeletal muscle leading to a switch in fuel usage from glucose/fatty acids to solely fatty acids, thereby drastically increasing its oxidative capacity. The metabolic action of PPARδ has also been verified in humans. In addition, it has become clear that the action of PPARδ is not restricted to skeletal muscle. Indeed, PPARδ has been shown to play a crucial role in whole-body lipid homeostasis as well as in insulin sensitivity, and it is active not only in skeletal muscle (as an activator of fat burning) but also in the liver (where it can activate glycolysis/lipogenesis, with the produced fat being oxidized in muscle) and in the adipose tissue (by incrementing lipolysis). The main aim of this review is to highlight the central role for activated PPARδ in the reversal of any tendency toward the development of insulin resistance

    De novo expression of uncoupling protein 3 is associated to enhanced mitochondrial thioesterase-1 expression and fatty acid metabolism in liver of fenofibrate-treated rats

    Get PDF
    AbstractUncoupling protein 3 (UCP3) is a member of the mitochondrial carrier superfamily, preferentially expressed in skeletal muscle. Its function is not fully understood and it is debated whether it uncouples oxidative phosphorylation as does UCP1 in brown adipose tissue. Recent evidences suggest a role for UCP3 in the flux of fatty acids in and out mitochondria and their utilization in concert with mitochondrial thioesterase-1 (MTE-1). In fact, mice overexpressing muscle UCP3 also show high levels of MTE-1. Fenofibrate is a hypolipidemic drug that prevents body weight gain in diet-induced obese rats and enhances lipid metabolism by activating peroxisome proliferator-activated receptors (PPARs). Because fatty acids and fenofibrate stimulate PPARs and in turn UCP3, we investigated whether UCP3 expression might be induced ‘de novo’ in situations of increased hepatic mitochondrial fatty acid utilization caused by a combined effect of a high-fat diet and fenofibrate treatment. We also investigated whether Mte-1 expression and β-oxidation were affected. We show here that Ucp3 is induced in liver of fenofibrate-treated rats at the mRNA and protein level. Expression was restricted to hepatocytes and was unevenly distributed in the liver. No increase in cell proliferation, inflammatory or fibrotic responses was found. Mte-1 expression and mitochondrial β-oxidation were upregulated. Thus, Ucp3 can be transactivated in tissues where it is normally silent and fenofibrate can attain this effect in liver. The data demonstrate that UCP3 is involved in fatty acid utilization and support the notion that UCP3 and MTE-1 are linked within the same metabolic pathway

    Studies of Complex Biological Systems with Applications to Molecular Medicine: The Need to Integrate Transcriptomic and Proteomic Approaches

    Get PDF
    Omics approaches to the study of complex biological systems with potential applications to molecular medicine are attracting great interest in clinical as well as in basic biological research. Genomics, transcriptomics and proteomics are characterized by the lack of an a priori definition of scope, and this gives sufficient leeway for investigators (a) to discern all at once a globally altered pattern of gene/protein expression and (b) to examine the complex interactions that regulate entire biological processes. Two popular platforms in “omics” are DNA microarrays, which measure messenger RNA transcript levels, and proteomic analyses, which identify and quantify proteins. Because of their intrinsic strengths and weaknesses, no single approach can fully unravel the complexities of fundamental biological events. However, an appropriate combination of different tools could lead to integrative analyses that would furnish new insights not accessible through one-dimensional datasets. In this review, we will outline some of the challenges associated with integrative analyses relating to the changes in metabolic pathways that occur in complex pathophysiological conditions (viz. ageing and altered thyroid state) in relevant metabolically active tissues. In addition, we discuss several new applications of proteomic analysis to the investigation of mitochondrial activity

    Thrombosis in vasculitis: from pathogenesis to treatment

    Get PDF
    In recent years, the relationship between inflammation and thrombosis has been deeply investigated and it is now clear that immune and coagulation systems are functionally interconnected. Inflammation-induced thrombosis is by now considered a feature not only of autoimmune rheumatic diseases, but also of systemic vasculitides such as Behçet’s syndrome, ANCA-associated vasculitis or giant cells arteritis, especially during active disease. These findings have important consequences in terms of management and treatment. Indeed, Behçet’syndrome requires immunosuppressive agents for vascular involvement rather than anticoagulation or antiplatelet therapy, and it is conceivable that also in ANCA-associated vasculitis or large vessel-vasculitis an aggressive anti-inflammatory treatment during active disease could reduce the risk of thrombotic events in early stages. In this review we discuss thrombosis in vasculitides, especially in Behçet’s syndrome, ANCA-associated vasculitis and large-vessel vasculitis, and provide pathogenetic and clinical clues for the different specialists involved in the care of these patients

    Differential Effects of 3,5-Diiodo-L-Thyronine and 3,5,3'-Triiodo-L-Thyronine On Mitochondrial Respiratory Pathways in Liver from Hypothyroid Rats.

    Get PDF
    Both 3,5-diiodo-L-thyronine (3,5-T2) and 3,5,3'-triiodo-L-tyronine (T3) affect energy metabolism having mitochondria as a major target. However, the underlying mechanisms are poorly understood. Here, using a model of chemically induced hypothyroidism in male Wistar rats, we investigated the effect of administration of either 3,5-T2 or T3 on liver oxidative capacity through their influence on mitochondrial processes including: proton-leak across the mitochondrial inner membrane; complex I-, complex II- and glycerol-3-phosphate-linked respiratory pathways; respiratory complex abundance and activities as well as individual complex aggregation into supercomplexes. Background/Aims: Both 3,5-diiodo-L-thyronine (3,5-T2) and 3,5,3'-triiodo-L-tyronine (T3) affect energy metabolism having mitochondria as a major target. However, the underlying mechanisms are poorly understood. Here, using a model of chemically induced hypothyroidism in male Wistar rats, we investigated the effect of administration of either 3,5-T2 or T3 on liver oxidative capacity through their influence on mitochondrial processes including: proton-leak across the mitochondrial inner membrane; complex I-, complex II- and glycerol-3-phosphate-linked respiratory pathways; respiratory complex abundance and activities as well as individual complex aggregation into supercomplexes. Methods: Hypothyroidism was induced by propylthiouracil and iopanoic acid; 3,5-T2 and T3 were intraperitoneally administered at 25 and 15 μg/100 g BW for 1 week, respectively. Resulting alterations in mitochondrial function were studied by combining respirometry, Blue Native-PAGE followed by in-gel activity, and Western blot analyses. Results: Administration of 3,5-T2 and T3 to hypothyroid (hypo) rats enhanced mitochondrial respiration rate with only T3 effectively stimulating proton-leak (450% vs. Hypo). T3 significantly enhanced complex I (+145% vs. Hypo), complex II (+66% vs. Hypo), and glycerol-3 phosphate dehydrogenase (G3PDH)-linked oxygen consumptions (about 6- fold those obtained in Hypo), while 3,5-T2 administration selectively restored Euthyroid values of complex II- and increased G3PDH- linked respiratory pathways (+165% vs. Hypo). The mitochondrial abundance of all respiratory complexes and of G3PDH was increased by T3 administration whereas 3,5-T2 only increased complex V and G3PDH abundance. 3,5-T2 enhanced complex I and complex II in gel activities with less intensity than did T3, and T3 also enhanced the activity of all other respiratory complexes tested. In addition, only T3 enhanced individual respiratory component complex assembly into supercomplexes. Conclusions: The reported data highlight novel molecular mechanisms underlying the effect elicited by iodothyronine administration to hypothyroid rats on mitochondrial processes related to alteration in oxidative capacity in the liver. The differential effects elicited by the two iodothyronines indicate that 3,5-T2, by influencing the kinetic properties of specific mitochondrial respiratory pathways, would promote a rapid response of the organelle, while T3, by enhancing the abundance of respiratory chain component and favoring the organization of respiratory chain complex in supercomplexes, would induce a slower and prolonged response of the organelle
    corecore