74 research outputs found

    The influence of some model parameters on the impurity distribution implanted into substrate surface

    Get PDF
    The model for description of the initial stage of ion implantation into the surface layer of the metal is presented. The interdependence of embedded impurity concentration and deformations arising from the impact of particles on the surface is investigated. The model takes into account the particle diffusion, the finite time of mass flux relaxation; the stress appearance due to a composition change of the surface layer and a mass transfer phenomenon under a stress gradient action. It is established that the interaction of mechanical waves and concentration leads to a distribution of concentration not corresponding to a pure diffusion process. The examples of coupled problems solution for different sets of model parameters are presented

    The influence of vacancy generation at the initial stage of ion implantation

    Get PDF
    The paper presents a coupled isothermal model at the initial stage of a solid surface treatment with particle beams. Mechanical stresses arising due to the interaction of particles with the surface affect the redistribution of the implanted impurity. Vacancies in the metal surface and their generation under stress are also taken into account. The kinetic law is formulated on the basis of thermodynamics of irreversible processes. The authors used numerical investigation methods. As a result, they have obtained the distributions of impurity concentration and deformations for various time moments. The authors also compare the concentration and deformation profiles with and without vacancies and study the influences of some model parameters. The effect of vacancy generation on the diffusion has been established to lead to an increase in the depth of penetration, as well as in the concentration of impurities

    ΠŸΠžΠ’Π«Π¨Π•ΠΠ˜Π• Π˜ΠΠ’Π•Π‘Π’Π˜Π¦Π˜ΠžΠΠΠžΠ™ ΠŸΠ Π˜Π’Π›Π•ΠšΠΠ’Π•Π›Π¬ΠΠžΠ‘Π’Π˜ Π Π•Π“Π˜ΠžΠΠ: ΠŸΠ ΠžΠ‘Π›Π•ΠœΠ« И ΠΠΠŸΠ ΠΠ’Π›Π•ΠΠ˜Π―

    Get PDF
    Π‘Ρ‚Π°Ρ‚ΡŒΡ посвящСна Ρ€Π°ΡΡΠΌΠΎΡ‚Ρ€Π΅Π½ΠΈΡŽ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ инвСстиционной ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ, Π² Ρ†Π΅Π½Ρ‚Ρ€Π΅ внимания – ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ инвСстиционной ΠΏΡ€ΠΈΠ²Π»Π΅ΠΊΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Ρ€Π΅Π³ΠΈΠΎΠ½Π°. На основС ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… исслСдований Π²Ρ‹Π΄Π΅Π»ΡΡŽΡ‚ΡΡ Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ‹, ΡΠ½ΠΈΠΆΠ°ΡŽΡ‰ΠΈΠ΅ ΠΈΠ½Π²Π΅ΡΡ‚ΠΈΡ†ΠΈΠΎΠ½Π½ΡƒΡŽ ΠΏΡ€ΠΈΠ²Π»Π΅ΠΊΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ρ€Π΅Π³ΠΈΠΎΠ½Π°, ΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ ряд мСроприятий, ΡΠΏΠΎΡΠΎΠ±ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΡ‚ΡŒ ΠΏΡ€ΠΈΡ‚ΠΎΠΊ инвСстиций Π² экономику БСлгородской области

    Influence of Organic Matter on the Transport of Mineral Colloids in the River-Sea Transition Zone

    Get PDF
    The River-Sea Transition Zone has a significant impact on marine ecosystems, especially at present, due to increased anthropogenic pressure on rivers. The colloidal form of river runoff has not been practically studied, unlike the dissolved and suspended one, but this form is particularly important for the transport of river substances. The mechanisms of substance transfer were studied using model systems (colloidal clay, Fe(OH)3 sol), particle aggregation was estimated by changes in optical density, turbidity and particle size. The influence of the nature of dissolved organic matter (DOM) and salinity on colloid transport was studied. It was found that humic substances (HS) (recalcitrant DOM) stabilize mineral colloids with increasing salinity, while their interaction with chitosan (labile DOM) promotes flocculation and further precipitation in the mixing zone. In natural conditions, labile DOM can be released during viral lysis of bacteria or salt stress of biota. It was shown that clay particles modified with HS are flocculated more effectively than pure clays. HS can facilitate the transport of Fe(OH)3 into the outer part of the mixing zone even in the presence of flocculants. The flocculation mechanism and modern views on this process are considered

    Development of the Republic of Sakha (Yakutia)'s Shadow Economy Assessment Methodology

    Get PDF
    The purpose of the article is to study the shadow economy assessment methodology. This article presents a comprehensive study of the parameters of a shadow economy, considers its essence, and defines its terminology. This study outlines the historical approach to the development of the shadow economy, both in Russia and worldwide, and gives a brief analysis of the economy of the Republic of Sakha. The authors examined the specifics of the statistical methods applied in assessing various structural elements of a shadow economy and measured and assessed the shadow economy in this region. The research conducted enabled the authors to formulate the main measures required to reduce the shadow economy. The scientific novelty is justified by the research results, which included studying and summarizing a wide range of published and unpublished materials, the examination of the initial and transitional periods of the shadow economy development in Yakutia. The article reveals the main causes and conditions that lead to the formation of the shadow economy in various sectors of the Yakutia economy. The solutions and suggestions proposed in the article are aimed at reducing the shadow economy parameters. The scientific research results are of theoretical and applied importance for public administration and authorities to improve the effectiveness of the fight against the shadow economy manifestations

    Врансплантация пластов ΠΌΠ΅Π·Π΅Π½Ρ…ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠ³Π΅Π½ΠΈΡ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ сСрдца для васкуляризации ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π° послС ΠΈΠ½Ρ„Π°Ρ€ΠΊΡ‚Π°

    Get PDF
    Purpose. To develop a method of producing tissue-engineered constructs (TECs) on the basis of resident mesenchymal progenitor cells (MPC) of the human heart and to assess the effect of TECs transplantation on regenerative processes in the heart using a model of myocardial infarction in rats.Materials and methods. Human resident MPCs were isolated from the right atrial auricle of CAD patients. A similar protocol was used to obtain MPCs from Wistar rats. The MPC immunophenotype was determined by cytofluorometry. Corresponding TECs were obtained on the basis of MPC sheets of human and rats' hearts. Myocardial infarction in rats was induced by ligation of the anterior descending coronary artery followed by TEC transplantation. Euthanasia was performed 30 days after the transplantation. Histological examination of the implant and vascularization cells, morphometric analysis, tracking of the MPC differentiation ability, determination of the content of growth factors by solid-phase ELISA were carried out. Statistical evaluation of the significance of differences was performed using the Statistica 8.0 software package.Results. The analysis of the obtained cell constructs showed that they consisted of several layers of cells interacting with each other by means of connexin 43 and were characterized by good cell viability as a part TECs. The number of vessels in the peri-infarction area under the transplant from the MPC was significantly higher than that in the reference group with signs of differentiation of cardiac MPCs transplanted into endothelial vascular cells.The increased vascularization was combined with an increase in the area of viable myocardial sites and a decrease in LV cavity dilation. Analysis of the cardiac MPC secretion products showed that they produce the most important growth factors and cytokines that regulate angiogenesis and migration of stem cells.Conclusion. The strategy of using epicardial TEC transplantation based on MPC sheets seems to be a rational approach for effective delivery of viable stem/progenitor cells to the damaged myocardium. The use of TEC helps to reduce or temporarily eliminate the effect of factors that contribute to progressive heart dysfunction by local paracrine exposure and activation of the revascularization processes in the affected zone.ЦСль. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ способ получСния Ρ‚ΠΊΠ°Π½Π΅ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½Ρ‹Ρ… конструкций (ВИК), Π½Π° основС Ρ€Π΅Π·ΠΈΠ΄Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΌΠ΅Π·Π΅Π½Ρ…ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠ³Π΅Π½ΠΈΡ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ (МПК) сСрдца Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΈ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ влияниС трансплантации ВИК Π½Π° Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ процСссы Π² сСрдцС Π½Π° ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΈΠ½Ρ„Π°Ρ€ΠΊΡ‚Π° ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π° крысы.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π Π΅Π·ΠΈΠ΄Π΅Π½Ρ‚Π½Ρ‹Π΅ МПК Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° выдСляли ΠΈΠ· ΡƒΡˆΠΊΠ° ΠΏΡ€Π°Π²ΠΎΠ³ΠΎ прСдсСрдия ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с Π˜Π‘Π‘. По Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎΠΌΡƒ ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»Ρƒ выдСляли МПК крысы Π»ΠΈΠ½ΠΈΠΈ Wistar. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ‚ΠΎΡ„Π»ΡƒΠΎΡ€ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ опрСдСляли ΠΈΠΌΠΌΡƒΠ½ΠΎΡ„Π΅Π½ΠΎΡ‚ΠΈΠΏ МПК. На основС пластов МПК сСрдца Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΈ крыс ΠΏΠΎΠ»ΡƒΡ‡Π°Π»ΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ ВИК. Π˜Π½Ρ„Π°Ρ€ΠΊΡ‚ ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π° Ρƒ крыс Π±Ρ‹Π» ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½ ΠΏΡƒΡ‚Π΅ΠΌ пСрСвязки ΠΏΠ΅Ρ€Π΅Π΄Π½Π΅ΠΉ нисходящСй ΠΊΠΎΡ€ΠΎΠ½Π°Ρ€Π½ΠΎΠΉ Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠΈ, послС Ρ‡Π΅Π³ΠΎ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Ρ‚Ρ€Π°Π½ΡΠΏΠ»Π°Π½Ρ‚Π°Ρ†ΠΈΡŽ ВИК. Π§Π΅Ρ€Π΅Π· 30 Π΄Π½Π΅ΠΉ послС трансплантации выполняли ΡΠ²Ρ‚Π°Π½Π°Π·ΠΈΡŽ. ΠŸΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π³ΠΈΡΡ‚ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΎΡ†Π΅Π½ΠΊΡƒ состояния ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ‚Π° ΠΈ васкуляризации, морфомСтричСский Π°Π½Π°Π»ΠΈΠ·, Ρ‚Ρ€Π΅ΠΊΠΈΠ½Π³ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΎΡ‡Π½ΠΎΠΉ способности МПК, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ содСрТания ростовых Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Ρ‚Π²Π΅Ρ€Π΄ΠΎΡ„Π°Π·Π½ΠΎΠ³ΠΎ ИЀА. Π‘Ρ‚Π°Ρ‚ΠΈΡΡ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΎΡ†Π΅Π½ΠΊΡƒ достовСрности Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠΉ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ с использованиСм ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ³ΠΎ ΠΏΠ°ΠΊΠ΅Ρ‚Π° Statistica 8.0.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Анализ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… конструкций ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΈ состоят ΠΈΠ· Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… слоСв ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΌΠ΅ΠΆΠ΄Ρƒ собой ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ коннСксин–43, ΠΈ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ΡΡ Ρ…ΠΎΡ€ΠΎΡˆΠ΅ΠΉ ΠΆΠΈΠ·Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒΡŽ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² составС ВИК. ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²ΠΎ сосудов Π² ΠΏΠ΅Ρ€ΠΈΠΈΠ½Ρ„Π°Ρ€ΠΊΡ‚Π½ΠΎΠΉ области ΠΏΠΎΠ΄ трансплантатом ΠΈΠ· МПК Π±Ρ‹Π»ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ большС, Ρ‡Π΅ΠΌ Π² ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΠ΅, с ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠΈ трансплантированных МПК сСрдца Π² ΡΠ½Π΄ΠΎΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ сосудов.Π£Π²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ васкуляризации ΡΠΎΡ‡Π΅Ρ‚Π°Π»ΠΎΡΡŒ с ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ участков ТизнСспособного ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π°, ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ΠΌ Π΄ΠΈΠ»Π°Ρ‚Π°Ρ†ΠΈΠΈ полости Π›Π–. Анализ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² сСкрСции МПК сСрдца ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΈ ΠΏΡ€ΠΎΠ΄ΡƒΡ†ΠΈΡ€ΡƒΡŽΡ‚ ваТнСйшиС Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ‹ роста ΠΈ Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½Ρ‹, Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Π°Π½Π³ΠΈΠΎΠ³Π΅Π½Π΅Π· ΠΈ ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΡŽ стволовых ΠΊΠ»Π΅Ρ‚ΠΎΠΊ.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. БтратСгия использования ΡΠΏΠΈΠΊΠ°Ρ€Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ трансплантации ВИК Π½Π° основС пластов ΠΈΠ· МПК прСдставляСтся Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠΌ для эффСктивной доставки ТизнСспособных стволовых/ΠΏΡ€ΠΎΠ³Π΅Π½ΠΈΡ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½Π½Ρ‹ΠΉ ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ВИК способствуСт ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡŽ ΠΈΠ»ΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌΡƒ ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡŽ дСйствия Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΡΠΏΠΎΡΠΎΠ±ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΏΡ€ΠΎΠ³Ρ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ дисфункции сСрдца, ΠΏΡƒΡ‚Π΅ΠΌ локального ΠΏΠ°Ρ€Π°ΠΊΡ€ΠΈΠ½Π½ΠΎΠ³ΠΎ воздСйствия ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ процСссов рСваскуляризации Π·ΠΎΠ½Ρ‹ поврСТдСния

    Evaluation of Availability of Human, Scientific, Technological and Innovative Potential in the Context of Priorities in Scientific and Technological Development of the Russian Federation

    Get PDF
    Introduction. The implementation of priorities of the scientific and technological development of the Russian Federation involves an assessment of the trends in the development of human, scientific, technological and innovation potential within the framework of these directions. In modern conditions of transformation of science and technology into key factors of Russian development, it is necessary to provide the country’s economy with human resources capable of withstanding β€œbig challenges”, but at this stage there is a shortage of highly qualified specialists in many key industries that can offer a new scientific result, taking into account the prospects for its application. The purpose of the article is to develop an approach to assess the human, scientific, technological and innovative potentials in the context of priorities in the scientific and technological development of the Russian Federation and its validation using the example of three priorities. Materials and Methods. The materials of this study draw on Rosstat and FSMNO ; Rospatent; Web of Science and Scopus. The object of research is to assess human, scientific, technological and innovative potential in the context of priorities in scientific and technological development of the Russian Federation. In the course of the research, a multiplicative model of the impact of the availability of human, scientific, technological and innovative capacity on labour intensity was developed. In the process of research, the following research and analysis methods were used: comparison, induction and deduction method, generalisation method, chain substitution method, logical structure study, system analysis, and special methods of statistical, comparative analysis. In the methodological plan, we used the system and process appro aches in the basis of the study. Results. The study revealed that the labour intensity in 2016 for all three priorities of the scientific and technological revolution of the Russian Federation has increased. Therefore, according to the priorities of the scientific and technological revolution of the Russian Federation, the availability of scientific, technological and innovative potential is not sufficient, which leads to a decrease in the reverse indicator of labour intensity - labour productivity in the markets within the framework of these priorities. Concerning the impact on labour intensity in all three priorities, one observes: the growth of β€œcollaborations” in fundamental research, the applied effectiveness of scientific activity, β€œcollaborations” of applied research; reduction in citations from scientific articles, low patent activity of engineering and technical workers, technological demand for patents. Therefore, against the background of emerging collaborative activity of actors in the process of research and development and the growth of the applied effectiveness of scientific activity, there is a low level of orientation of scientific and scientific-technical results to c ommercialisation. Discussion and Conclusions. On the basis of the multiplicative model developed by the authors for assessing the impact of the provision of human, scientific, technological and innovative capacities on labor intensity, it was tested on the example of the three priorities of the scientific and technological development of the Russian Federation (a, b, c). It was revealed that the labour intensity in 2016, according to the priorities of the Scientific and Technical Council of the Russian Federation, increased, and the availability of scientific, technological and innovative potential is not sufficient, which leads to a decrease in the inverse measure of labour intensity - labour productivity in high-tech markets within the framework of these priorities. Concerning the impact on labour intensity for all three priorities, it was revealed: the growth of β€œcollaborations” of fundamental research, the applied effectiveness of scientific activity, β€œcollaborations” of applied research; reduction in citations from scientific articles, low patent activity of engineering and technical workers, technological demand for patents. It was also revealed that against the background of the emerging collaborative activity of actors in the process of research and development and the growth of the applied effectiveness of scientific activity, there is a low level of orientation of scientific and scientific-technical results to commercialisation

    ΠΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π°ΡƒΡ‚ΠΎΡ„Π°Π³ΠΈΠΈ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… эпикарда ΠΏΡ€ΠΈ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ острого ΠΏΠ΅Ρ€ΠΈΠΊΠ°Ρ€Π΄ΠΈΡ‚Π°

    Get PDF
    Pericarditis is a group of polyetiological diseases often associated with emergence of life– threatening conditions. Poor knowledge of underlying cellular mechanisms and lack of relevant approaches to investigation of pericarditis result in major challenges in diagnosis and treatment.The aim of this work was to identify changes in the activity of autophagy in epicardial cells in acute pericarditis.Materials and methods. Acute pericarditis in mice was induced by intrapericardial injection of Freund's adjuvant in the study group (n=15). The control group included animals receiving either intrapericardial injection of phosphate-buffered saline (PBS) (n=15), or sham surgery without injections (n=7). On Days 3 or 5 after surgery the animals were euthanized under isoflurane anesthesia. Immunofluorescence staining of cardiac tissue cryo-sections and immunoblotting were used to assess the intensity of inflammation and autophagy in the epicardium.Results. Inflammation and other signs of acute pericarditis resulting in thickening of some epicardial areas were found: 68+9% in the control (after PBS injection) and 124+22% after Freund's adjuvant injection (p=0.009); other signs included cellular infiltration of epicardium and multiple adhesions. The epicardial layer exhibited signs of mesothelial cells reorganization with 11-fold increase of autophagy markers LC3 II/LC3 I ratio: 0.07+0.02 in the control group (after PBS injection) and 0.84+0.07 - in acute pericarditis (p=0.04), and accumulation of collagen fibers.Conclusion. Development of acute pericarditis is accompanied by activation of epicardial mesothelial cells, intensified autophagy and development of fibrous changes in epicacardial/ subepicardial areas.ΠŸΠ΅Ρ€ΠΈΠΊΠ°Ρ€Π΄ΠΈΡ‚ – это Π³Ρ€ΡƒΠΏΠΏΠ° полиэтилогичных Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ часто ассоциированы с Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ΠΌ ΠΆΠΈΠ·Π½Π΅ΡƒΠ³Ρ€ΠΎΠΆΠ°ΡŽΡ‰ΠΈΡ… состояний. БущСствСнныС слоТности ΠΏΡ€ΠΈ ΠΈΡ… диагностикС ΠΈ Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ Π² Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ стСпСни обусловлСны ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½Ρ‹ΠΌ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ΠΌ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² развития ΠΏΠ΅Ρ€ΠΈΠΊΠ°Ρ€Π΄ΠΈΡ‚Π° ΠΈ отсутствиСм Ρ€Π΅Π»Π΅Π²Π°Π½Ρ‚Π½Ρ‹Ρ… ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² ΠΏΡ€ΠΈ Π΅Π³ΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ.ЦСль Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹: выявлСниС измСнСния активности Π°ΡƒΡ‚ΠΎΡ„Π°Π³ΠΈΠΈ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… эпикарда ΠΏΡ€ΠΈ остром ΠΏΠ΅Ρ€ΠΈΠΊΠ°Ρ€Π΄ΠΈΡ‚Π΅.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠžΡΡ‚Ρ€Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΊΠ°Ρ€Π΄ΠΈΡ‚ Π² сСрдцС ΠΌΡ‹ΡˆΠ΅ΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ ΠΏΡƒΡ‚Π΅ΠΌ ΠΈΠ½Ρ‚Ρ€Π°ΠΏΠ΅Ρ€ΠΈΠΊΠ°Ρ€Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ввСдСния 50 ΠΌΠΊΠ» Π°Π΄ΡŠΡŽΠ²Π°Π½Ρ‚Π° Π€Ρ€Π΅ΠΉΠ½Π΄Π° (n=15). ΠšΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹ΠΌ ΠΈΠ½Ρ‚Ρ€Π°ΠΏΠ΅Ρ€ΠΊΠ°Ρ€Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎ Π²Π²ΠΎΠ΄ΠΈΠ»ΠΈ 50 ΠΌΠΊΠ» раствора фосфатно-солСвого Π±ΡƒΡ„Π΅Ρ€Π° (Π€Π‘Π‘) (n=15) ΠΈΠ»ΠΈ выполняли ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ Π±Π΅Π· ΠΈΠ½Ρ‚Ρ€Π°ΠΏΠ΅Ρ€ΠΈΠΊΠ°Ρ€Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ввСдСния ΠΊΠ°ΠΊΠΎΠ³ΠΎ-Π»ΠΈΠ±ΠΎ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° (Π»ΠΎΠΆΠ½ΠΎΠΎΠΏΠ΅Ρ€ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Π΅, n=7). На 3-ΠΉ ΠΈΠ»ΠΈ 5-ΠΉ дСнь ΠΎΡ‚ провСдСния хирургичСской ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ послС ингаляционной Π½Π°Ρ€ΠΊΠΎΡ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈΠ·ΠΎΡ„Π»ΡŽΡ€Π°Π½ΠΎΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»ΠΈ ΡΠ²Ρ‚Π°Π½Π°Π·ΠΈΡŽ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…. ΠΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ воспалСния Π² Π·ΠΎΠ½Π΅ эпикарда ΠΈ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΡΡ‚ΡŒ Π°ΡƒΡ‚ΠΎΡ„Π°Π³ΠΈΠΈ исслСдовали с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ иммунофлуорСсцСнтных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΡ криосрСзов сСрдца ΠΈ ΠΈΠΌΠΌΡƒΠ½ΠΎΠ±Π»ΠΎΡ‚ΠΈΠ½Π³Π°.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ»ΠΈ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ ΠΈ появлСниС ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² острого ΠΏΠ΅Ρ€ΠΈΠΊΠ°Ρ€Π΄ΠΈΡ‚Π°, ассоциированного с ΡƒΡ‚ΠΎΠ»Ρ‰Π΅Π½ΠΈΠ΅ΠΌ Π·ΠΎΠ½Ρ‹ эпикарда: 68+9% Π² ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ (послС ввСдСния Π€Π‘Π‘) ΠΈ 124+22% послС ввСдСния Π°Π΄ΡŠΡŽΠ²Π°Π½Ρ‚Π° Π€Ρ€Π΅ΠΉΠ½Π΄Π°, p=0,009, Π΅Π³ΠΎ ΠΏΠΎΠ»ΠΈΠΌΠΎΡ€Ρ„Π½ΠΎ-ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ ΠΈΠ½Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠ΅ΠΉ ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ мноТСствСнных спаСк. Π’ составС ΡΠΏΠΈΠΊΠ°Ρ€Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ слоя наблюдали ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ Ρ€Π΅ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ мСзотСлия, 11-ΠΊΡ€Π°Ρ‚Π½ΠΎΠ΅ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ Π² Π½ΠΈΡ… ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² Π°ΡƒΡ‚ΠΎΡ„Π°Π³ΠΈΠΈ LC3 II/LC3 I: 0,07+0,02 Π² ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ (послС ввСдСния Π€Π‘Π‘) ΠΈ 0,84+0,07 ΠΏΡ€ΠΈ остром ΠΏΠ΅Ρ€ΠΈΠΊΠ°Ρ€Π΄ΠΈΡ‚Π΅, Ρ€=0,04, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π°ΠΊΠΊΡƒΠΌΡƒΠ»ΡΡ†ΠΈΡŽ ΠΊΠΎΠ»Π»Π°Π³Π΅Π½ΠΎΠ²Ρ‹Ρ… Π²ΠΎΠ»ΠΎΠΊΠΎΠ½.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Π Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ острого ΠΏΠ΅Ρ€ΠΈΠΊΠ°Ρ€Π΄ΠΈΡ‚Π° сопровоТдаСтся Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠ΅ΠΉ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΡΠΏΠΈΠΊΠ°Ρ€Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ мСзотСлия, ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ΠΌ выраТСнности Π°ΡƒΡ‚ΠΎΡ„Π°Π³ΠΈΠΈ ΠΈ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ΠΌ Ρ„ΠΈΠ±Ρ€ΠΎΠ·Π½Ρ‹Ρ… ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Π² Π·ΠΎΠ½Π΅ эпикарда/субэпикарда. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ возмоТности модуляции Π°ΡƒΡ‚ΠΎΡ„Π°Π³ΠΈΠΈ с Ρ†Π΅Π»ΡŒΡŽ воздСйствия Π½Π° Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ острого ΠΏΠ΅Ρ€ΠΈΠΊΠ°Ρ€Π΄ΠΈΡ‚Π° являСтся ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚ΠΎΠΌ Π΄Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠΈΡ… исслСдований
    • …
    corecore