15 research outputs found

    Replacement, Reduction, and Refinement of Animal Experiments in Anticancer Drug Development: The Contribution of 3D In Vitro Cancer Models in the Drug Efficacy Assessment

    No full text
    In the last decades three-dimensional (3D) in vitro cancer models have been proposed as a bridge between bidimensional (2D) cell cultures and in vivo animal models, the gold standards in the preclinical assessment of anticancer drug efficacy. 3D in vitro cancer models can be generated through a multitude of techniques, from both immortalized cancer cell lines and primary patient-derived tumor tissue. Among them, spheroids and organoids represent the most versatile and promising models, as they faithfully recapitulate the complexity and heterogeneity of human cancers. Although their recent applications include drug screening programs and personalized medicine, 3D in vitro cancer models have not yet been established as preclinical tools for studying anticancer drug efficacy and supporting preclinical-to-clinical translation, which remains mainly based on animal experimentation. In this review, we describe the state-of-the-art of 3D in vitro cancer models for the efficacy evaluation of anticancer agents, focusing on their potential contribution to replace, reduce and refine animal experimentations, highlighting their strength and weakness, and discussing possible perspectives to overcome current challenges

    In Vitro–In Vivo Correlation (IVIVC) Population Modeling for the In Silico Bioequivalence of a Long-Acting Release Formulation of Progesterone

    No full text
    Health authorities carefully evaluate any change in the batch manufacturing process of a drug before and after regulatory approval. In the absence of an adequate in vitro–in vivo correlation (Level A IVIVC), an in vivo bioequivalence (BE) study is frequently required, increasing the cost and time of drug development. This study focused on developing a Level A IVIVC for progesterone vaginal rings (PVRs), a dosage form designed for the continuous delivery in vivo. The pharmacokinetics (PK) of four batches of rings charged with 125, 375, 750 and 1500 mg of progesterone and characterized by different in vitro release rates were evaluated in two clinical studies. In vivo serum concentrations and in vitro release profiles were used to develop a population IVIVC progesterone ring (P-ring) model through a direct differential-equation-based method and a nonlinear-mixed-effect approach. The in vivo release, Rvivo(t), was predicted from the in vitro profile through a nonlinear relationship. Rvivo(t) was used as the input of a compartmental PK model describing the in vivo serum concentration dynamics of progesterone. The proposed IVIVC P-ring model was able to correctly predict the in vivo concentration–time profiles of progesterone starting from the in vitro PVR release profiles. Its internal and external predictability was carefully evaluated considering the FDA acceptance criteria for IVIVC assessment of extended-release oral drugs. Obtained results justified the use of the in vitro release testing in lieu of clinical studies for the BE assessment of any new PVRs batches. Finally, the possible use of the developed population IVIVC model as a simulator of virtual BE trials was explored through a case study

    In silico trial for the assessment of givinostat dose adjustment rules based on the management of key hematological parameters in polycythemia vera patients

    No full text
    Abstract Polycythemia vera (PV) is a chronic myeloproliferative neoplasm characterized by excessive levels of platelets (PLT), white blood cells (WBC), and hematocrit (HCT). Givinostat (ITF2357) is a potent histone‐deacetylase inhibitor that showed a good safety/efficacy profile in PV patients during phase I/II studies. A phase III clinical trial had been planned and an adaptive dosing protocol had been proposed where givinostat dose is iteratively adjusted every 28 days (one cycle) based on PLT, WBC, and HCT. As support, a simulation platform to evaluate and refine the proposed givinostat dose adjustment rules was developed. A population pharmacokinetic/pharmacodynamic model predicting the givinostat effects on PLT, WBC, and HCT in PV patients was developed and integrated with a control algorithm implementing the adaptive dosing protocol. Ten in silico trials in ten virtual PV patient populations were simulated 500 times. Considering an eight‐treatment cycle horizon, reducing/increasing the givinostat daily dose by 25 mg/day step resulted in a higher percentage of patients with a complete hematological response (CHR), that is, PLT ≤400 × 109/L, WBC ≤10 × 109/L, and HCT < 45% without phlebotomies in the last three cycles, and a lower percentage of patients with grade II toxicity events compared with 50 mg/day adjustment steps. After the eighth cycle, 85% of patients were predicted to receive a dose ≥100 mg/day and 40.90% (95% prediction interval = [34, 48.05]) to show a CHR. These results were confirmed at the end of 12th, 18th, and 24th cycles, showing a stability of the response between the eighth and 24th cycles

    Juntas / Juntes

    Get PDF
    Multitud d'autores i autors aporten píndoles de microliteratura, de gèneres diversos, al tercer volum amb què l'Institut Universitari d'Estudis Feministes i de Gènere Purificación Escribano vol respondre al desafiament per l'eradicació de la violència contra les dones.Tercer desafío por la erradicación de la violencia contra las mujeres del Institut Universitari d'Estudis Feministes i de Gènere Purificación Escribano de la Universitat Jaume I a través de microliteratura

    Treatment patterns and use of resources in patients with tuberous sclerosis complex : insights from the TOSCA registry

    No full text
    Tuberous Sclerosis Complex (TSC) is a rare autosomal-dominant disorder caused by mutations in the TSC1 or TSC2 genes. Patients with TSC may suffer from a wide range of clinical manifestations; however, the burden of TSC and its impact on healthcare resources needed for its management remain unknown. Besides, the use of resources might vary across countries depending on the country-specific clinical practice. The aim of this paper is to describe the use of TSC-related resources and treatment patterns within the TOSCA registry. A total of 2,214 patients with TSC from 31 countries were enrolled and had a follow-up of up to 5 years. A search was conducted to identify the variables containing both medical and non-medical resource use information within TOSCA. This search was performed both at the level of the core project as well as at the level of the research projects on epilepsy, subependymal giant cell astrocytoma (SEGA), lymphangioleiomyomatosis (LAM), and renal angiomyolipoma (rAML) taking into account the timepoints of the study, age groups, and countries. Data from the quality of life (QoL) research project were analyzed by type of visit and age at enrollment. Treatments varied greatly depending on the clinical manifestation, timepoint in the study, and age groups. GAB Aergics were the most prescribed drugs for epilepsy, and mTOR inhibitors are dramatically replacing surgery in patients with SEGA, despite current recommendations proposing both treatment options. mTOR inhibitors are also becoming common treatments in rAML and LAM patients. Forty-two out of the 143 patients (29.4%) who participated in the QoL research project reported inpatient stays over the last year. Data from non-medical resource use showed the critical impact of TSC on job status and capacity. Disability allowances were more common in children than adults (51.1% vs 38.2%). Psychological counseling, social services and social worker services were needed by <15% of the patients, regardless of age. The long-term nature, together with the variability in its clinical manifestations, makes TSC a complex and resource-demanding disease. The present study shows a comprehensive picture of the resource use implications of TSC

    CoCoNet: Towards coast to coast networks of marine protected areas (From the shore to the high and deep sea), coupled with sea-based wind energy potential

    No full text
    This volume contains the main results of the EC FP7 "The Ocean of Tomorrow" Project CoCoNet, divided in two sections: 1) a set of guidelines to design networks of Marine Protected Areas in the Mediterranean and the Black Seas; 2) a smart wind chart that will allow evaluating the possibility of installing Offshore Wind Farms in both seas. The concept of Cells of Ecosystem Functioning, based on connectivity, is introduced to define natural units of management and conservation. The definition of Good Environmental Status, as defined in the Marine Strategy Framework Directive, is fully embraced to set the objectives of the project, by adopting a holistic approach that integrates a full set of disciplines, ranging from physics to bio-ecology, economics, engineering and many sub-disciplines. The CoCoNet Consortium involved scientist sfrom 22 states, based in Africa, Asia, and Europe, contributing to build a coherent scientific community
    corecore