33 research outputs found

    Vascular and osseous cells in polymer structures for tissue engineering

    No full text
    Artificial vascular and bone prostheses are engineered as bioinert, not allowing cell attachment and growth. Our aim was to prepare materials based on natural and synthetic polymers that could modify the surface or create the bulk material of prostheses, and test their bioactivity in vitro. We prepared fibrin assemblies of various thicknesses and evaluated the adhesion, growth and differentiation of endothelial cells (EC) on these layers. We observed increased cell spreading on twodimensional fibrin assemblies and improved cell growth and maturation on thick fibrin gels. Fibrin coated with collagen I, or fibronectin, increased the adhesion area and the proliferation activity of vascular smooth muscle cells (VSMC). Synthetic polymers were based on an inert block copolymer of poly(DL-lactide) and polyethylene oxide (PDLLA-b-PEO) in which 5% or 20% of the PEO chains were grafted with Gly-Arg-Gly-Asp-Ser-Gly oligopeptide, a ligand for cell adhesion receptors. Grafting oligopeptide peptide to the cell non-adhesive copolymer restored adhesion and growth of VSMC, even in a serum-free medium. Synthetic polymers could therefore serve as artificial extracellular matrix analogues for vascular tissue repair and regeneration. Our study with human osteoblast-like MG 63 cells cultured in poly(lactic-co-glycolic acid)..

    Vascular and osseous cells in polymer structures for tissue engineering

    No full text
    Artificial vascular and bone prostheses are engineered as bioinert, not allowing cell attachment and growth. Our aim was to prepare materials based on natural and synthetic polymers that could modify the surface or create the bulk material of prostheses, and test their bioactivity in vitro. We prepared fibrin assemblies of various thicknesses and evaluated the adhesion, growth and differentiation of endothelial cells (EC) on these layers. We observed increased cell spreading on twodimensional fibrin assemblies and improved cell growth and maturation on thick fibrin gels. Fibrin coated with collagen I, or fibronectin, increased the adhesion area and the proliferation activity of vascular smooth muscle cells (VSMC). Synthetic polymers were based on an inert block copolymer of poly(DL-lactide) and polyethylene oxide (PDLLA-b-PEO) in which 5% or 20% of the PEO chains were grafted with Gly-Arg-Gly-Asp-Ser-Gly oligopeptide, a ligand for cell adhesion receptors. Grafting oligopeptide peptide to the cell non-adhesive copolymer restored adhesion and growth of VSMC, even in a serum-free medium. Synthetic polymers could therefore serve as artificial extracellular matrix analogues for vascular tissue repair and regeneration. Our study with human osteoblast-like MG 63 cells cultured in poly(lactic-co-glycolic acid)..

    Adhesion and growth of adipose tissue-derived stem cells on fibrin assemblies with attached growth factors for tissue engineering of heart valves

    No full text
    Currently used xenogeneic biological heart valve prostheses are decellularized and crosslinked with glutaraldehyde. These grafts usually undergo degeneration and calcification. Pericardium-based heart valve prostheses, re-seeded with autologous cells, i.e. Adipose tissue-derived cells (ASCs) and endothelial cells, could have longer durability and biocompatibility. In order to improve the adhesion of cells and their ingrowth into decellularized pericardium, various fibrin (Fb) layers were developed, i.e. Fb, Fb with covalently bound heparin (H), Fb with either vascular endothelial growth factor (VEGF) or fibroblast growth factor 2 (FGF) in various concentrations (1 ng/ml, 10 ng/ml, 100 ng/ml) or with both VEGF and FGF (100 ng/ml). Growth factors were attached onto Fb via heparin or were adsorbed. ASCs were seeded on theses layers in a DMEM medium supplemented with 2 % of fetal bovine serum, TGFβ1 and BMP-4 (both 2.5 ng/ml), and with ascorbic acid. Cell adhesion and growth/viability was assessed by counted cell number/MTS evaluation. ASCs were stained for differentiation markers of smooth muscle cells, such as alpha-actin, calponin, and myosin heavy chain. On day 7, ASCs on Fb-H-VEGF layers produced both calponin and alpha-actin. An increased FGF concentration caused reduced calponin staining of ASCs. Lack of heparin in fibrin assemblies with growth factors inhibited the production of both alpha-actin and calponin in ASCs. The highest ASCs density/viability was found on Fb-H-VEGF-FGF layer. The proper formulation of fibrin coatings could be favorable for ASCs growth and differentiation and could subsequently support endothelialization of cardiovascular prostheses with endothelial cells
    corecore