57 research outputs found

    A novel method for pair-matching using three-dimensional digital models of bone:mesh-to-mesh value comparison

    Get PDF
    The commingling of human remains often hinders forensic/physical anthropologists during the identification process, as there are limited methods to accurately sort these remains. This study investigates a new method for pair-matching, a common individualization technique, which uses digital three-dimensional models of bone: mesh-to-mesh value comparison (MVC). The MVC method digitally compares the entire three-dimensional geometry of two bones at once to produce a single value to indicate their similarity. Two different versions of this method, one manual and the other automated, were created and then tested for how well they accurately pair-matched humeri. Each version was assessed using sensitivity and specificity. The manual mesh-to-mesh value comparison method was 100 % sensitive and 100 % specific. The automated mesh-to-mesh value comparison method was 95 % sensitive and 60 % specific. Our results indicate that the mesh-to-mesh value comparison method overall is a powerful new tool for accurately pair-matching commingled skeletal elements, although the automated version still needs improvement. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00414-016-1334-3) contains supplementary material, which is available to authorized users

    Age estimation for two Mediterranean populations:rib histomorphometry applied to forensic identification and bone remodelling research

    Get PDF
    Numerous intrinsic and extrinsic factors influence bone remodelling rates and have shown to affect the accuracy of histological aging methods. The present study investigates the rib cortex from two Mediterranean skeletal collections exploring the development of population-specific standards for histomorphometric age-at-death estimation. Eighty-eight standard ribs from two samples, Cretans and Greek-Cypriots, were processed histologically. Thirteen raw and composite histomorphometric parameters were assessed and observer error tested. The correlation between age and the parameters and the differences between sex and population subsamples were explored through group comparisons and analysis of covariance. General linear models assessed through data fit indicators and cross-validation were generated from the total dataset, and by sex and population subsamples. Most of the histological variables showed a statistically significant correlation with age with some differences observed by sex and by sample. From the twelve models generated, the optimal model for the whole sample included osteon population density (OPD), osteon perimeter, and osteon circularity producing an error of 10.71 years. When sex and samples were separated, the best model selected included OPD and osteon perimeter producing an error of 8.07 years for Greek-Cypriots. This research demonstrates the feasibility of quantitative bone histology to estimate age, obtaining errors rates in accordance with macroscopic ageing techniques. Sex and sample population differences need further investigation and inter-population variation in remodelling rates is suggested. Moreover, this study contributes to the creation of population-specific standards for Cretans and Greek-Cypriots

    Age-related trends in the trabecular micro-architecture of the medial clavicle: is it of use in forensic science?

    Get PDF
    The mechanical and structural properties of bone are known to change significantly with age. Within forensic and archaeological investigations, the medial end of the clavicle is typically used for estimating the age-at-death of an unknown individual. Although, this region of the skeleton is of interest to forensic and clinical domains, alterations beyond the macro-scale have not been fully explored. For this study, non-destructive micro-computed tomography (µ-CT) was employed to characterize structural alterations to the cancellous bone of the medial clavicle. Fresh human cadaveric specimens (12-59 years) obtained at autopsy were utilized for this study, and were scanned with a voxel size of ∼83µm. Morphometric properties were quantified and indicated that the bone volume, connectivity density, mineral density, and number of trabeculae decreased with age, while the spacing between the trabeculae increased with age. In contrast to other sub-regions of the skeleton, trabecular thickness, and degree of anisotropy did not correlate with age. Collectively, this could suggest that the network is becoming increasingly perforated with age rather than exhibiting trabecular thinning. These results are used in the context of deriving a potential protocol for forensic investigations by using this particular and largely unexplored region of the skeleton, and provide inspiration for future experiments concerning micro-architectural and small scale changes in other regions of the human skeleton

    Exploring the functionality of mesh-to-mesh value comparison in pair-matching and its application to fragmentary remains

    Get PDF
    SIMPLE SUMMARY: Forensic anthropologists often face the task of analysing a mixed group of skeletal remains or matching a solitary bone with the rest of a skeleton to determine if it belongs to the same individual. One of the best ways to do this is by pair-matching left and right bones of the same type. Common pair-matching methods experience issues such as high levels of subjectivity, lack of reliability, or expensive cost of implementation. This study explores the application of the relatively new method, mesh-to-mesh value comparison (MVC), which matches paired bones based on morphological shape to determine the likelihood that they derive from the same individual. This study sought to expand on the success found in past publications using MVC and to see how well it performed on a sample of clavicles, a bone known for having a high degree of bilateral variability, of 80 modern Turkish individuals. This study also explored whether MVC can reliably match fragmented bones to their intact counterpart. Results show MVC successfully matched 88.8% of paired clavicles and suggest the method continues to be a promising avenue for pair-matching that is not affected by ancestry and may be applicable to fragmented remains with further study. ABSTRACT: Many cases encountered by forensic anthropologists involve commingled remains or isolated elements. Common methods for analysing these contexts are characterised by limitations such as high degrees of subjectivity, high cost of application, or low proven accuracy. This study sought to test mesh-to-mesh value comparison (MCV), a relatively new method for pair-matching skeletal elements, to validate the claims that the technique is unaffected by age, sex and pathology. The sample consisted of 160 three-dimensional clavicle models created from computed tomography (CT) scans of a contemporary Turkish population. Additionally, this research explored the application of MVC to match fragmented elements to their intact counterparts by creating a sample of 480 simulated fragments, consisting of three different types based on the region of the bone they originate from. For comparing whole clavicles, this resulted in a sensitivity value of 87.6% and specificity of 90.9% using ROC analysis comparing clavicles. For the fragment comparisons, each type was compared to the entire clavicles of the opposite side. The results included a range of sensitivity values from 81.3% to 87.6%. Overall results are promising and the MVC technique seems to be a useful technique for matching paired elements that can be accurately applied to a Modern Turkish sample

    Bone-mineral density: clinical significance, methods of quantification and forensic applications

    Get PDF
    Bone-mineral density (BMD) is a measure of the inorganic mineral content inbone, and is one of the more informative assessments of bone quality in both clinical studiesand forensic investigations. Several factors, such as age, sex, disease, genetics, and lifestyle,affect BMD measurements, and normative standards must be applied for specific groups andindividuals. One of the most common disorders associated with low BMD is osteoporosisand increased fracture risk, due to a decrease in bone strength and an increase in bonefragility. Medical conditions like diabetes or hyperthyroidism and other parameters like peakbone mass and postmenopausal estrogen deficiency also impact BMD. Single- and dual-energy photon absorptiometry, quantitative computet tomography, and magnetic resonanceimaging are some of the technological modalities for BMD quantification, and each presentsdistinct advantages and limitations, depending on the purpose of the analysis, the specificcharacteristics of the individual, the bone site under examination, and the equipment andtrained personnel available. Recently, BMD values were applied to forensic medicine in avariety of scenarios ranging from age and sex estimation to the assessment of malnutritionand the use offinite-element modelling. Despite technical and methodological inconsisten-cies reported in the literature on BMD readings, there is scope for expanding the use of thisvariable in forensic settings (4) (PDF) Bone-mineral density: clinical significance, methods of quantification and forensic applications. Available from: https://www.researchgate.net/publication/334676972_Bone-mineral_density_clinical_significance_methods_of_quantification_and_forensic_applications [accessed Aug 22 2019]

    Sex estimation in a Turkish population using Purkait’s triangle: a virtual approach by 3-dimensional computed tomography (3D-CT)

    Get PDF
    Sex estimation is considered one of the first steps in the forensic identification process. Morphological and morphometrical differences between males and females have been used as means for morphoscopic and metric methods on both cranial and postcranial skeletal elements. When dry skeletal elements are not available, virtual data can be used as a substitute. The present research explores 3-dimensional (3D) scans from a Turkish population to test a sex estimation method developed by Purkait (2005). Overall, 296 individuals were used in this study (158 males and 138 females). Purkait’s triangle parameters were measured on computed tomography (CT) scans obtained from both right and left femora of each patient at the Bakirkoy Dr. Sadi Konuk Training Research Hospital (Istanbul, Turkey). Intra- and inter-observer errors were assessed for all variables through technical error of measurements analysis. Bilateral asymmetry and sex differences were evaluated using parametric and non-parametric statistical approaches. Univariate and multivariate discriminant function analyses were then conducted. Observer errors demonstrated an overall agreement within and between experts, as indicated by technical error of measurement (TEM) results. No bilateral asymmetries were reported, and all parameters demonstrated a statistically significant difference between males and females. Fourteen discriminant models were generated by applying single and combined parameters, producing a total correct sex classification ranging from 78.4% to 92.6%. In addition, over 67% of the total sample was accurately classified, with 95% or greater posterior probabilities. Our study demonstrates the feasibility of 3D sex estimation using Purkait’s triangle on a Turkish population, with accuracy rates comparable to those reported in other populations. This is the first attempt to apply this method on virtual data and although further validation and standardisation are recommended for its application on dry bone, this research constitutes a significant contribution to the development of population-specific standards when only virtual data are available

    Metric variation of the tibia in the Mediterranean: implications in forensic identification

    Get PDF
    Ancestry estimation from skeletal remains is a challenging task, but essential for the creation of a complete biological profile. As such, the study of human variation between populations is important for the fields of biological and forensic anthropology, as well as medicine. Cranial and dental morphological variation have traditionally been linked to geographic affinity resulting in several methods of ancestry estimation, while the postcranial skeleton has been systematically neglected. The current study explores metric variation of the tibia in six Mediterranean populations and its validity in estimating ancestry in the Mediterranean. The study sample includes 909 individuals (470 males and 439 females) from Cyprus, Greece, Italy, Spain, Portugal and Turkey. The sample was divided in two subsamples: a reference and a validation sample. Multinomial regression models were created based on the reference sample and then applied to validation sample. The first model used three variables and resulted in 57% and 56% accuracy for the two samples respectively, while the second model (6 variables) resulted in 80% and 74% respectively. Classification between groups ranged from 28% to 95% for the reference sample and from 15% to 91% for the validation sample. The highest classification accuracy was noted for the Greek sample (95% and 90% for the reference and validation sample respectively), followed by the Turkish sample (74% and 78% respectively). The Spanish, Portuguese and Italian samples presented greater morphological overlap which resulted in lower classification accuracies. The results indicate that although the tibia presents considerable variation amongst neighbour populations is not suitable as a sole skeletal element to separate all groups successfully. A combination of different skeletal elements may be required in order to achieve the levels of reliability required for forensic applications

    Bone histomorphometry of the clavicle in a forensic sample from Albania

    Get PDF
    Forensic assessment of skeletal material includes age estimation of unknown individuals. When dealing with extremely fragmented human remains that lack macro-features used in age estimation, histological assessment of the skeletal elements can be employed. Historically, microscopic methods for age assessment used by forensic anthropologists have been available since 1965. Several skeletal elements have been used for this purpose. Among them, the clavicle has garnered very little attention. The purpose of this study is to explore the validity of clavicular histomorphometry as an age marker in a modern Balkan sample. This study examined a modern clavicular autopsy sample from Albania. The sample consisted of 33 individuals of known age and cause of death. Data were collected for micro-anatomical features including osteon population density (OPD) and cortical area. Intra- and inter-observer errors were assessed through technical error of measurement (TEM) and R coefficient. A validation study was performed in order to test the accuracy of existing histological formulae. Regression analysis was run to developed age prediction models with the best models tested through cross-validation and the comparison between OPD for the Albanian sample and a European-American sample examined. Intra- and inter-observer error TEM results demonstrated values falling within the limits of acceptance. The existing histological methods did not perform accurately on the sample under study. Regression equations for Albanians produced age estimations deviating 8 and 11 years from known age. Cross-validation on the most accurate regression formula which includes OPD as a single variable demonstrated similar mean errors. Statistically significant differences were observed between the Albanian and the European-American population when the two samples were compared. The research presented is the fifth article published and the fifth population explored on clavicular microstructure. The potential of histology to estimate age on the Albanian population is shown here; however, population effect, diet and health status might be considered. Further inclusion of individuals will corroborate our preliminary findings

    Age related changes of rib cortical bone matrix and the application to forensic age-at-death estimation

    Get PDF
    Forensic anthropology includes, amongst other applications, the positive identification of unknown human skeletal remains. The first step in this process is an assessment of the biological profile, that is: sex, age, stature and ancestry. In forensic contexts, age estimation is one of the main challenges in the process of identification. Recently established admissibility criteria are driving researchers towards standardisation of methodological procedures. Despite these changes, experience still plays a central role in anthropological examinations. In order to avoid this issue, age estimation procedures (i) must be presented to the scientific community and published in peer reviewed journals, (ii) accurately explained in terms of procedure and (iii) present clear information about the accuracy of the estimation and possible error rates. In order to fulfil all these requirements, a number of methods based on physiological processes which result in biochemical changes in various tissue structures at the molecular level, such as modifications in DNA-methylation and telomere shortening, racemization of proteins and stable isotopes analysis, have been developed. The current work proposes a new systematic approach in age estimation based on tracing physicochemical and mechanical degeneration of the rib cortical bone matrix. This study used autopsy material from 113 rib specimens. A set of 33 parameters were measured by standard bio-mechanical (nanoindentation and microindentation), physical (TGA/DSC, XRD and FTIR) and histomorphometry (porosity-ImageJ) methods. Stepwise regressions were used to create equations that would produce the best ‘estimates of age at death’ vs real age of the cadavers. Five equations were produced; in the best of cases an equation counting 7 parameters had an R2 = 0.863 and mean absolute error of 4.64 years. The present method meets all the admissibility criteria previously described. Furthermore, the method is experience-independent and as such can be performed without previous expert knowledge of forensic anthropology and human anatomy
    corecore