23 research outputs found

    Predicting Binding to P-Glycoprotein by Flexible Receptor Docking

    Get PDF
    P-glycoprotein (P-gp) is an ATP-dependent transport protein that is selectively expressed at entry points of xenobiotics where, acting as an efflux pump, it prevents their entering sensitive organs. The protein also plays a key role in the absorption and blood-brain barrier penetration of many drugs, while its overexpression in cancer cells has been linked to multidrug resistance in tumors. The recent publication of the mouse P-gp crystal structure revealed a large and hydrophobic binding cavity with no clearly defined sub-sites that supports an “induced-fit” ligand binding model. We employed flexible receptor docking to develop a new prediction algorithm for P-gp binding specificity. We tested the ability of this method to differentiate between binders and nonbinders of P-gp using consistently measured experimental data from P-gp efflux and calcein-inhibition assays. We also subjected the model to a blind test on a series of peptidic cysteine protease inhibitors, confirming the ability to predict compounds more likely to be P-gp substrates. Finally, we used the method to predict cellular metabolites that may be P-gp substrates. Overall, our results suggest that many P-gp substrates bind deeper in the cavity than the cyclic peptide in the crystal structure and that specificity in P-gp is better understood in terms of physicochemical properties of the ligands (and the binding site), rather than being defined by specific sub-sites

    Predicting Efflux Ratios and Blood-Brain Barrier Penetration from Chemical Structure: Combining Passive Permeability with Active Efflux by P‑Glycoprotein

    No full text
    In order to reach their pharmacologic targets, successful central nervous system (CNS) drug candidates have to cross a complex protective barrier separating brain from the blood. Being able to predict a priori which molecules can successfully penetrate this barrier could be of significant value in CNS drug discovery. Herein we report a new computational approach that combines two mechanism-based models, for passive permeation and for active efflux by P-glycoprotein, to provide insight into the multiparameter optimization problem of designing small molecules able to access the CNS. Our results indicate that this approach is capable of distinguishing compounds with high/low efflux ratios as well as CNS+/CNS- compounds and provides advantage over estimating P-glycoprotein efflux or passive permeability alone when trying to predict these emergent properties. We also demonstrate that this method could be useful for rank-ordering chemically similar compounds and that it can provide detailed mechanistic insight into the relationship between chemical structure and efflux ratios and/or CNS penetration, offering guidance as to how compounds could be modified to improve their access into the brain

    Enzymatic Assimilation of Cyanide via Pterin-Dependent Oxygenolytic Cleavage to Ammonia and Formate in Pseudomonas fluorescens NCIMB 11764

    No full text
    Utilization of cyanide as a nitrogen source by Pseudomonas fluorescens NCIMB 11764 occurs via oxidative conversion to carbon dioxide and ammonia, with the latter compound satisfying the nitrogen requirement. Substrate attack is initiated by cyanide oxygenase (CNO), which has been shown previously to have properties of a pterin-dependent hydroxylase. CNO was purified 71-fold and catalyzed the quantitative conversion of cyanide supplied at micromolar concentrations (10 to 50 μM) to formate and ammonia. The specific activity of the partially purified enzyme was approximately 500 mU/mg of protein. The pterin requirement for activity could be satisfied by supplying either the fully (tetrahydro) or partially (dihydro) reduced forms of various pterin compounds at catalytic concentrations (0.5 μM). These compounds included, for example, biopterin, monapterin, and neopterin, all of which were also identified in cell extracts. Substrate conversion was accompanied by the consumption of 1 and 2 molar equivalents of molecular oxygen and NADH, respectively. When coupled with formate dehydrogenase, the complete enzymatic system for cyanide oxidation to carbon dioxide and ammonia was reconstituted and displayed an overall reaction stoichiometry of 1:1:1 for cyanide, O(2), and NADH consumed. Cyanide was also attacked by CNO at a higher concentration (1 mM), but in this case formamide accumulated as the major reaction product (formamide/formate ratio, 0.6:0.3) and was not further degraded. A complex reaction mechanism involving the production of isocyanate as a potential CNO monooxygenation product is proposed. Subsequent reduction of isocyanate to formamide, whose hydrolysis occurs as a CNO-bound intermediate, is further envisioned. To our knowledge, this is the first report of enzymatic conversion of cyanide to formate and ammonia by a pterin-dependent oxygenative mechanism

    Comparison between logP and %HSA.

    No full text
    <p>The weak correlation between calculated logP (octanol/water) from QikProp (<i>QPlogP<sub>o/w</sub></i>) and experimentally-determined %HSA binding is illustrated. In cases where data for the same compound has been reported in multiple publications, we compute a standard deviation of the reported value, represented here by marker size.</p

    Comparison between LogP and GlideXP score.

    No full text
    <p>A comparison of <i>QPLogP<sub>o/w</sub></i> and GlideXP scores for the strict set demonstrates that the two descriptors of HSA binding are not highly correlated with one another and therefore may be used in combination to describe the extent of serum albumin binding for a given compound.</p

    Predictive ability of each docking method as determined by AUC.

    No full text
    <p>Predictive ability of each docking method as determined by AUC.</p
    corecore