5 research outputs found

    Zero-Field Slow Magnetic Relaxation in Binuclear Dy Acetylacetonate Complex with Pyridine-N-Oxide

    No full text
    A new complex [Dy(C5H7O2)3(C5H5NO)]2·2CHCl3 (1) has been synthesized by the reaction of pyridine-N-oxide with dysprosium (III) acetylacetonate in an n-heptane/chloroform mixture (1/20). X-ray data show that each dysprosium atom is chelate-like coordinated by three acetylacetonate ligands and the oxygen atom from two bridging molecules of pyridine-N-oxide, which unite the dysprosium atoms into a binuclear complex. Static (constant current) and dynamic (alternating current) investigations and ab initio calculations of the magnetic properties of complex 1 were performed. The complex was shown to exhibit a frequency maximum under alternating current. At temperatures above 10 K, the maximum shifts to a higher frequency, which is characteristic of SMM behavior. It is established that the dependence of ln(τ) on 1/T for the relaxation process is nonlinear, which indicates the presence of Raman relaxation mechanisms, along with the Orbach mechanism

    Effect of Ligand Substitution on Zero-Field Slow Magnetic Relaxation in Mononuclear Dy(III) β-Diketonate Complexes with Phenanthroline-Based Ligands

    No full text
    Herein, we report the synthesis, structure and magnetic properties of two mononuclear complexes of general formula [Dy(acac)3(L)], where L = 2,2-dimethyl-1,3-dioxolo[4,5-f][1,10] phenanthroline (1) or 1,10-phenanthroline-5,6-dione (2), and acac− = acetylacetonate anion. A distorted square-antiprismatic N2O6 environment around the central Dy(III) ion is formed by three acetylacetonate anions and a phenanthroline-type ligand. Both complexes display a single-molecule magnet (SMM) behavior at zero applied magnetic field. Modification of the peripheral part of ligands L provide substantial effects both on the magnetic relaxation barrier Ueff and on the quantum tunneling of magnetization (QTM). Ab initio quantum-chemical calculations are used to analyze the electronic structure and magnetic properties

    Single-Ion Magnet Et<sub>4</sub>N[Co<sup>II</sup>(hfac)<sub>3</sub>] with Nonuniaxial Anisotropy: Synthesis, Experimental Characterization, and Theoretical Modeling

    No full text
    In this article we report the synthesis and structure of the new Co­(II) complex Et<sub>4</sub>N­[Co<sup>II</sup>­(hfac)<sub>3</sub>] (<b>I</b>) (hfac = hexafluoroacetylacetonate) exhibiting single-ion magnet (SIM) behavior. The performed analysis of the magnetic characteristics based on the complementary experimental techniques such as static and dynamic magnetic measurements, electron paramagnetic resonance spectroscopy in conjunction with the theoretical modeling (parametric Hamiltonian and ab initio calculations) demonstrates that the SIM properties of <b>I</b> arise from the nonuniaxial magnetic anisotropy with strong positive axial and significant rhombic contributions
    corecore