66 research outputs found

    A multiplex endpoint RT-PCR assay for quality assessment of RNA extracted from formalin-fixed paraffin-embedded tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNA extracted from formalin-fixed paraffin-embedded (FFPE) samples is chemically modified and degraded, which compromises its use in gene expression studies. Most of the current approaches for RNA quality assessment are not suitable for FFPE derived RNA.</p> <p>Results</p> <p>We have developed a single-tube multiplex endpoint RT-PCR assay specifically designed to evaluate RNA extracted from FFPE tissues for mRNA integrity and performance in reverse transcription - quantitative real-time PCR (RT-qPCR) assays. This single-tube quality control (QC) assay minimises the amount of RNA used in quality control. mRNA integrity and the suitability of RNA for RT-PCR is evaluated by the multiplex endpoint RT-PCR assay using the <it>TBP </it>gene mRNA as the target sequence. The RT-PCR amplicon sizes, 92, 161, 252 and 300 bp, cover a range of amplicon sizes suitable for a wide range of RT-qPCR assays. The QC assay was used to evaluate RNA prepared by two different protocols for extracting total RNA from needle microdissected FFPE breast tumour samples. The amplification products were analysed by gel electrophoresis where the spectrum of amplicon sizes indicated the level of RNA degradation and thus the suitability of the RNA for PCR. The ability of the multiplex endpoint RT-PCR QC assay to identify FFPE samples with an adequate RNA quality was validated by examining the C<sub>q </sub>values of an RT-qPCR assay with an 87 bp amplicon.</p> <p>Conclusions</p> <p>The multiplex endpoint RT-PCR assay is well suited for the determination of the quality of FFPE derived RNAs, to identify which RT-PCR assays they are suitable for, and is also applicable to assess non-FFPE RNA for gene expression studies. Furthermore, the assay can also be used for the evaluation of RNA extraction protocols from FFPE samples.</p

    Separating the wheat from the chaff: a prioritisation pipeline for the analysis of metabolomics datasets

    Get PDF
    Liquid Chromatography Mass Spectrometry (LC-MS) is a powerful and widely applied method for the study of biological systems, biomarker discovery and pharmacological interventions. LC-MS measurements are, however, significantly complicated by several technical challenges, including: (1) ionisation suppression/enhancement, disturbing the correct quantification of analytes, and (2) the detection of large amounts of separate derivative ions, increasing the complexity of the spectra, but not their information content. Here we introduce an experimental and analytical strategy that leads to robust metabolome profiles in the face of these challenges. Our method is based on rigorous filtering of the measured signals based on a series of sample dilutions. Such data sets have the additional characteristic that they allow a more robust assessment of detection signal quality for each metabolite. Using our method, almost 80% of the recorded signals can be discarded as uninformative, while important information is retained. As a consequence, we obtain a broader understanding of the information content of our analyses and a better assessment of the metabolites detected in the analyzed data sets. We illustrate the applicability of this method using standard mixtures, as well as cell extracts from bacterial samples. It is evident that this method can be applied in many types of LC-MS analyses and more specifically in untargeted metabolomics

    Rapid detection of carriers with BRCA1 and BRCA2 mutations using high resolution melting analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Germline inactivating mutations in <it>BRCA1 </it>and <it>BRCA2 </it>underlie a major proportion of the inherited predisposition to breast and ovarian cancer. These mutations are usually detected by DNA sequencing. Cost-effective and rapid methods to screen for these mutations would enable the extension of mutation testing to a broader population. High resolution melting (HRM) analysis is a rapid screening methodology with very low false negative rates. We therefore evaluated the use of HRM as a mutation scanning tool using, as a proof of principle, the three recurrent BRCA1 and BRCA2 founder mutations in the Ashkenazi Jewish population in addition to other mutations that occur in the same regions.</p> <p>Methods</p> <p>We designed PCR amplicons for HRM scanning of <it>BRCA1 </it>exons 2 and 20 (carrying the founder mutations185delAG and 5382insC respectively) and the part of the <it>BRCA2 </it>exon 11 carrying the 6174delT founder mutation. The analysis was performed on an HRM-enabled real time PCR machine.</p> <p>Results</p> <p>We tested DNA from the peripheral blood of 29 individuals heterozygous for known mutations. All the Ashkenazi founder mutations were readily identified. Other mutations in each region that were also readily detected included the recently identified Greek founder mutation 5331G>A in exon 20 of <it>BRCA1</it>. Each mutation had a reproducible melting profile.</p> <p>Conclusion</p> <p>HRM is a simple and rapid scanning method for known and unknown <it>BRCA1 </it>and <it>BRCA2 </it>germline mutations that can dramatically reduce the amount of sequencing required and reduce the turnaround time for mutation screening and testing. In some cases, such as tracking mutations through pedigrees, sequencing may only be necessary to confirm positive results. This methodology will allow for the economical screening of founder mutations not only in people of Ashkenazi Jewish ancestry but also in other populations with founder mutations such as Central and Eastern Europeans (<it>BRCA1 </it>5382insC) and Greek Europeans (<it>BRCA1 </it>5331G>A).</p

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Metabolomic Characterization of the Salt Stress Response in Streptomyces coelicolor▿ ‡

    Get PDF
    The humicolous actinomycete Streptomyces coelicolor routinely adapts to a wide variety of habitats and rapidly changing environments. Upon salt stress, the organism is also known to increase the levels of various compatible solutes. Here we report the results of the first high-resolution metabolomics time series analysis of various strains of S. coelicolor exposed to salt stress: the wild type, mutants with progressive knockouts of the ectoine biosynthesis pathway, and two stress regulator mutants (with disruptions of the sigB and osaB genes). Samples were taken from cultures at 0, 4, 8, and 24 h after salt stress treatment and analyzed by liquid chromatography-mass spectrometry with an LTQ Orbitrap XL mass spectrometer. The results suggest that a large fraction of amino acids is upregulated in response to the salt stress, as are proline/glycine-containing di- and tripeptides. Additionally we found that 5′-methylthioadenosine, a known inhibitor of polyamine biosynthesis, is downregulated upon salt stress. Strikingly, no major differences between the wild-type cultures and the two stress regulator mutants were found, indicating a considerable robustness of the metabolomic response to salt stress, compared to the more volatile changes in transcript abundance reported earlier

    BRCA2 carriers with male breast cancer show elevated tumour methylation

    Get PDF
    Abstract Background Male breast cancer (MBC) represents a poorly characterised group of tumours, the management of which is largely based on practices established for female breast cancer. However, recent studies demonstrate biological and molecular differences likely to impact on tumour behaviour and therefore patient outcome. The aim of this study was to investigate methylation of a panel of commonly methylated breast cancer genes in familial MBCs. Methods 60 tumours from 3 BRCA1 and 25 BRCA2 male mutation carriers and 32 males from BRCAX families were assessed for promoter methylation by methylation-sensitive high resolution melting in a panel of 10 genes (RASSF1A, TWIST1, APC, WIF1, MAL, RARβ, CDH1, RUNX3, FOXC1 and GSTP1). An average methylation index (AMI) was calculated for each case comprising the average of the methylation of the 10 genes tested as an indicator of overall tumour promoter region methylation. Promoter hypermethylation and AMI were correlated with BRCA carrier mutation status and clinicopathological parameters including tumour stage, grade, histological subtype and disease specific survival. Results Tumours arising in BRCA2 mutation carriers showed significantly higher methylation of candidate genes, than those arising in non-BRCA2 familial MBCs (average AMI 23.6 vs 16.6, p = 0.01, 45% of genes hypermethylated vs 34%, p < 0.01). RARβ methylation and AMI-high status were significantly associated with tumour size (p = 0.01 and p = 0.02 respectively), RUNX3 methylation with invasive carcinoma of no special type (94% vs 69%, p = 0.046) and RASSF1A methylation with coexistence of high grade ductal carcinoma in situ (33% vs 6%, p = 0.02). Cluster analysis showed MBCs arising in BRCA2 mutation carriers were characterised by RASSF1A, WIF1, RARβ and GTSP1 methylation (p = 0.02) whereas methylation in BRCAX tumours showed no clear clustering to particular genes. TWIST1 methylation (p = 0.001) and AMI (p = 0.01) were prognostic for disease specific survival. Conclusions Increased methylation defines a subset of familial MBC and with AMI may be a useful prognostic marker. Methylation might be predictive of response to novel therapeutics that are currently under investigation in other cancer types
    corecore