22 research outputs found

    Are honey bees a suitable model for fetal alcohol spectrum disorders?

    Get PDF
    Fetal alcohol spectrum disorders (FASDs) are a continuum of disorders caused by prenatal exposure to ethanol. They affect an estimated 4% of Canadians. FASDs are associated with a host of complications including, but not limited to, cognitive difficulties, developmental delay, increased mortality, smaller birth weight, smaller brain size, as well as gross and fine motor issues. It has been previously established that fruit flies (Drosophila melanogaster) are a suitable invertebrate model for FASDs. Honey bees (Apis mellifera) share many similarities to Drosophila as a research model, but with the distinct advantage of highly social behaviour, similar to that of humans. In this project we exposed honey bees to incremental, sublethal concentrations of ethanol during larval development and monitored their survival, developmental rate, and weight at adult emergence. We found that larval honey bees exposed to ≥6% ethanol experienced significantly higher mortality, developmental delay, and lower body weight at emergence. Accordingly, these results, in combination with ongoing neurobehavioural analyses of adult bees exposed to ethanol as larvae, suggest that honey bees may be an ideal model for human FASDs

    Plasma protein profiles of neonatal pigs before and after suckling

    No full text
    Absorption of colostral proteins ingested by neonatal piglets within 24 to 36 h after birth is generally considered to be non-selective. Nevertheless, the transfer of colostral proteins, except immunoglubulins, from gut to bloodstream after natural suckling is still poorly characterized. The purpose of this study was to investigate the changes in 2-dimensional electrophoretic plasma protein profiles of neonatal piglets before and after suckling, in order to characterize the gastrointestinal absorption of colostral proteins into the neonatal bloodstream. As expected, the most significant change in plasma after suckling is the presence of a large amount of immunoglobulin. However, while the concentration of a few proteins was mildly increased in post-suckling plasma, the evidence of absorption of colostral non-immunoglobulin proteins by neonatal piglets was not detected in this study

    Comparative chronic toxicity of three neonicotinoids on New Zealand packaged honey bees

    No full text
    <div><p>Background</p><p>Thiamethoxam, clothianidin, and imidacloprid are the most commonly used neonicotinoid insecticides on the Canadian prairies. There is widespread contamination of nectar and pollen with neonicotinoids, at concentrations which are sublethal for honey bees (<i>Apis mellifera</i> Linnaeus).</p><p>Objective</p><p>We compared the effects of chronic, sublethal exposure to the three most commonly used neonicotinoids on honey bee colonies established from New Zealand packaged bees using colony weight gain, brood area, and population size as measures of colony performance.</p><p>Methods</p><p>From May 7 to July 29, 2016 (12 weeks), sixty-eight colonies received weekly feedings of sugar syrup and pollen patties containing 0 nM, 20 nM (median environmental dose), or 80 nM (high environmental dose) of one of three neonicotinoids (thiamethoxam, clothianidin, and imidacloprid). Colonies were weighed at three-week intervals. Brood area and population size were determined from digital images of colonies at week 12. Statistical analyses were performed by ANOVA and mixed models.</p><p>Results</p><p>There was a significant negative effect (-30%, p<0.01) on colony weight gain (honey production) after 9 and 12 weeks of exposure to 80 nM of thiamethoxam, clothianidin, or imidacloprid and on bee cluster size (-21%, p<0.05) after 12 weeks. Analysis of brood area and number of adult bees lacked adequate (>80%) statistical power to detect an effect.</p><p>Conclusions</p><p>Chronic exposure of honey bees to high environmental doses of neonicotinoids has negative effects on honey production. Brood area appears to be less sensitive to detect sublethal effects of neonicotinoids.</p></div
    corecore