13 research outputs found

    Emergence dynamics of barnyardgrass and jimsonweed from two depths when switching from conventional to reduced and no-till conditions

    Get PDF
    A cylinder experiment was conducted in northern Greece during 2005 and 2006 to assess emergence dynamics of barnyardgrass (Echinochloa crus-galli (L.) Beauv.) and jimsonweed (Datura stramonium L.) in the case of a switch from conventional to conservation tillage systems (CT). Emergence was surveyed from two burial depths (5 and 10 cm) and with simulation of reduced tillage (i.e. by soil disturbance) and no-till conditions. Barnyardgrass emergence was significantly affected by burial depth, having greater emergence from 5 cm depth (96%) although even 78% of seedlings emerged from 10 cm depth after the two years of study. Emergence of barnyardgrass was stable across years from the different depths and tillage regimes. Jimsonweed seeds showed lower germination than barnyardgrass during the study period, whereas its emergence was significantly affected by soil disturbance having 41% compared to 28% without disturbance. A burial depth x soil disturbance interaction was also determined, which showed higher emergence from 10 cm depth with soil disturbance. Jimsonweed was found to have significantly higher emergence from 10 cm depth with soil disturbance in Year 2. Seasonal emergence timing of barnyardgrass did not vary between the different burial depth and soil disturbance regimes, as it started in April and lasted until end of May in both years. Jimsonweed showed a bimodal pattern, with first emergence starting end of April until mid-May and the second ranging from mid-June to mid-August from 10 cm burial depth and from mid-July to mid-August from 5 cm depth, irrespective of soil disturbance in both cases

    Pesticide Exposure, Safety Issues, and Risk Assessment Indicators

    Get PDF
    Pesticides are widely used in agricultural production to prevent or control pests, diseases, weeds, and other plant pathogens in an effort to reduce or eliminate yield losses and maintain high product quality. Although pesticides are developed through very strict regulation processes to function with reasonable certainty and minimal impact on human health and the environment, serious concerns have been raised about health risks resulting from occupational exposure and from residues in food and drinking water. Occupational exposure to pesticides often occurs in the case of agricultural workers in open fields and greenhouses, workers in the pesticide industry, and exterminators of house pests. Exposure of the general population to pesticides occurs primarily through eating food and drinking water contaminated with pesticide residues, whereas substantial exposure can also occur in or around the home. Regarding the adverse effects on the environment (water, soil and air contamination from leaching, runoff, and spray drift, as well as the detrimental effects on wildlife, fish, plants, and other non-target organisms), many of these effects depend on the toxicity of the pesticide, the measures taken during its application, the dosage applied, the adsorption on soil colloids, the weather conditions prevailing after application, and how long the pesticide persists in the environment. Therefore, the risk assessment of the impact of pesticides either on human health or on the environment is not an easy and particularly accurate process because of differences in the periods and levels of exposure, the types of pesticides used (regarding toxicity and persistence), and the environmental characteristics of the areas where pesticides are usually applied. Also, the number of the criteria used and the method of their implementation to assess the adverse effects of pesticides on human health could affect risk assessment and would possibly affect the characterization of the already approved pesticides and the approval of the new compounds in the near future. Thus, new tools or techniques with greater reliability than those already existing are needed to predict the potential hazards of pesticides and thus contribute to reduction of the adverse effects on human health and the environment. On the other hand, the implementation of alternative cropping systems that are less dependent on pesticides, the development of new pesticides with novel modes of action and improved safety profiles, and the improvement of the already used pesticide formulations towards safer formulations (e.g., microcapsule suspensions) could reduce the adverse effects of farming and particularly the toxic effects of pesticides. In addition, the use of appropriate and well-maintained spraying equipment along with taking all precautions that are required in all stages of pesticide handling could minimize human exposure to pesticides and their potential adverse effects on the environment

    The Use of Spatial Interpolation to Improve the Quality of Corn Silage Data in Case of Presence of Extreme or Missing Values

    No full text
    Agricultural spatial analysis has the potential to offer new ways of analyzing crop data considering the spatial information of the measurements. Moving from farmers’ estimates and crop-cuts techniques to interpolation is a new challenge, and a promising path to achieving more reliable results, especially in the case of field data with extreme or missing values. By comparing the main descriptive statistics of three types of crop parameters (fresh weight, dry weight, and ear weight) in three randomly taken maize plots, we found that the issue of missing values can be addressed by using interpolation to calculate estimated values of given parameters in non-sampling locations. Moreover, based on the descriptive statistics, the implementation of interpolation can reduce crop field variability (extreme values) and achieve an improvement of coefficient of variation (CV) values up to 30%, compared with other methods used, such as the replacing of missing values by the average of all data, or the average of the row or column, with an improvement of only up to 15%. These findings strongly suggest that the implementation of an interpolation method in case of extreme or missing values in crop data is an effective process for improving their quality, and consequently, their reliability. As a result, the application of spatial interpolation to existing crop data can provide more dependable estimations of average crop parameters values, compared to the usual farmers’ estimates

    Impact of ALS Herbicide-Resistant Perennial Ryegrass (<i>Lolium perenne</i>) Population on Growth Rate and Competitive Ability against Wheat

    No full text
    Three perennial ryegrass (Lolium perenne) populations (R1, R2, and R3) with suspected resistance (R) to acetolactate synthase (ALS) or acetyl-CoA carboxylase (ACCase) herbicides were collected from wheat (Triticum aestivum) fields in northwestern Greece to study the underlying mechanisms of resistance and their impact on growth rate and competitive ability against wheat. Preemergence and postemergence plant dose–response assays showed that the R1 population was cross-resistant to the ALS inhibitors chlorsulfuron, mesosulfuron + iodosulfuron, and pyroxsulam, but susceptible (S) to imazamox. However, all populations were susceptible to the ACCase inhibitors clodinafop-propargyl, clethodim, diclofop-methyl, and pinoxaden. The analysis of the ALS gene sequence revealed a substitution of Pro197 by His or Leu in the ALS enzyme in L. perenne, which is reported for the first time in this weed and indicates a potential mechanism of target site-mediated resistance. The R1 population grown in the absence or presence of wheat competition displayed similar aboveground biomass and tiller number trends, and therefore similar estimated growth rates. In addition, the aboveground biomass of wheat was similarly reduced by both the R1 and S populations, supporting the evidence of their similar competitive ability against wheat. In general, these findings indicate that there is no clear evidence for the fitness advantage of R1 over the S population

    Dose-response and growth rate variation among glyphosate resistant and susceptible Conyza albida and Conyza bonariensis populations

    No full text
    Plant responses to glyphosate applied at different doses were examined for one glyphosate resistant (R) and one glyphosate susceptible (S) population of Conyza albida and C. bonarienis. Growth rates and development stages of five R C. albida and three R C. bonarienis populations were also compared with those of their respective S counterparts to investigate the possible impact of the glyphosate resistance trait on their fitness. The GR50 values for C. albida R (3.94−5.22 kg a.i. · ha−1) and S (0.24−0.31 kg a.i. · ha−1) populations were higher than those of C. bonariensis R (0.60−1.51 kg a.i. · ha−1) and S (0.10−0.13 kg a.i. · ha−1). The growth rate (slope b) of one R C. albida population was lower than the respective S and other R populations, while growth rates of most R and S C. bonariensis populations were similar. Some R populations showed inconsistent differences in some development stages when compared to those of the S ones, which cannot be attributed to the glyphosate resistance trait
    corecore