525 research outputs found

    The radical left's turn towards civil society in Greece: One strategy, two paths

    Get PDF
    The Communist Party of Greece (KKE) and the Coalition of the Radical Left (SYRIZA) made remarkable ‘turns towards civil society’ over the last decade. It is argued that this was primarily a response aimed at strengthening their social legitimacy, which had reached its lowest point in the early 1990s. Differences in the way the two parties attempted to stabilise and engage their membership and re-establish links to trade unions and new social movements can be attributed to their distinct ideological and organisational legacies. Despite those differences, their respective linkage strategies were both successful until the game-changing 2012 Greek national elections, which brought about the remarkable rise of SYRIZA and the electoral demise of the KKE

    Takayasu arteritis in childhood: retrospective experience from a tertiary referral centre in the United Kingdom.

    Get PDF
    Takayasu arteritis (TA) is an idiopathic large-vessel vasculitis affecting the aorta and its major branches. Although the disease rarely affects children, it does occur, even in infants. The objective of this study was to evaluate the clinical features, disease activity, treatment and outcome of childhood TA in a tertiary UK centre

    Symplectic quaternion scheme for biophysical molecular dynamics

    Get PDF
    Massively parallel biophysical molecular dynamics simulations, coupled with efficient methods, promise to open biologically significant time scales for study. In order to promote efficient fine-grained parallel algorithms with low communication overhead, the fast degrees of freedom in these complex systems can be divided into sets of rigid bodies. Here, a novel Hamiltonian form of a minimal, nonsingular representation of rigid body rotations, the unit quaternion, is derived, and a corresponding reversible, symplectic integrator is presented. The novel technique performs very well on both model and biophysical problems in accord with a formal theoretical analysis given within, which gives an explicit condition for an integrator to possess a conserved quantity, an explicit expression for the conserved quantity of a symplectic integrator, the latter following and in accord with Calvo and Sanz-Sarna, Numerical Hamiltonian Problems (1994), and extension of the explicit expression to general systems with a flat phase space

    Magnetoinductive breathers in magnetic metamaterials

    Full text link
    The existence and stability of discrete breathers (DBs) in one-dimensional and two-dimensional magnetic metamaterials (MMs), which consist of periodic arrangem ents (arrays) of split-ring resonators (SRRs), is investigated numerically. We consider different configurations of the SRR arrays, which are related to the relative orientation of the SRRs in the MM, both in one and two spatial dimensions. In the latter case we also consider anisotropic MMs. Using standard numerical methods we construct several types of linearly stable breather excitations both in Hamiltonian and dissipative MMs (dissipative breathers). The study of stability in both cases is performed using standard Floquet analysi s. In both cases we found that the increase of dimensionality from one to two spatial dimensions does not destroy the DBs, which may also exist in the case of moderate anisotropy (in two dimensions). In dissipative MMs, the dynamics is governed by a power balance between the mainly Ohmic dissipation and driving by an alternating magnetic field. In that case it is demonstrated that DB excitation locally alters the magnetic response of MMs from paramagnetic to diamagnetic. Moreover, when the frequency of the applied field approaches the SRR resonance frequency, the magnetic response of the MM in the region of the DB excitation may even become negative (extreme diamagnetic).Comment: 12 pages 15 figure

    Granulomatosis with polyangiitis mimicking infective endocarditis in an adolescent male

    Get PDF
    Granulomatosis with polyangiitis (GPA) is a rare but serious small vessel vasculitis with heterogeneous clinical presentation ranging from mainly localised disease with a chronic course, to a florid, acute small vessel vasculitic form characterised by severe pulmonary haemorrhage and/or rapidly progressive vasculitis or other severe systemic vasculitic manifestations. Cardiac involvement is, however, uncommon in the paediatric population. We report a case of a 16-year-old male who presented with peripheral gangrene and vegetation with unusual location on the supporting apparatus of the tricuspid valve, initially considered to have infective endocarditis but ultimately diagnosed with GPA. We provide an overview of the limited literature relating to cardiac involvement in GPA, and the diagnostic challenge relating to infective endocarditis in this context, especially focusing on the interpretation of the antineutrophil cytoplasmic antibody (ANCA) and the characteristic clinical features to identify in order to promptly recognise GPA, since timely diagnosis and treatment are essential for this potentially life-threatening condition

    Nonlinear magnetoinductive transmission lines

    Full text link
    Power transmission in one-dimensional nonlinear magnetic metamaterials driven at one end is investigated numerically and analytically in a wide frequency range. The nonlinear magnetic metamaterials are composed of varactor-loaded split-ring resonators which are coupled magnetically through their mutual inductances, forming thus a magnetoiductive transmission line. In the linear limit, significant power transmission along the array only appears for frequencies inside the linear magnetoinductive wave band. We present analytical, closed form solutions for the magnetoinductive waves transmitting the power in this regime, and their discrete frequency dispersion. When nonlinearity is important, more frequency bands with significant power transmission along the array may appear. In the equivalent circuit picture, the nonlinear magnetoiductive transmission line driven at one end by a relatively weak electromotive force, can be modeled by coupled resistive-inductive-capacitive (RLC) circuits with voltage-dependent capacitance. Extended numerical simulations reveal that power transmission along the array is also possible in other than the linear frequency bands, which are located close to the nonlinear resonances of a single nonlinear RLC circuit. Moreover, the effectiveness of power transmission for driving frequencies in the nonlinear bands is comparable to that in the linear band. Power transmission in the nonlinear bands occurs through the linear modes of the system, and it is closely related to the instability of a mode that is localized at the driven site.Comment: 11 pages, 11 figures, submitted to International Journal of Bifurcation and Chao
    • …
    corecore