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1 Introduction

It is now well known that as a result of the interplay between discreteness, dispersion and non-

linear interaction intrinsic localized modes or discrete breathers are induced in translational

invariant Hamiltonian lattice. Intense work during the last ten years [1] has addressed and re-

solved in many cases issues regarding their rigorous existence, numerical constructions, stability,

dynamics, thermodynamics, quantum aspects and very recently also the experimental manifes-

tation in speci�c materials[2]. One aspect that the discrete breathers seem to share in most cases

and with other nonlinear localized excitations like solitons in continuum systems is the typical

spatial exponential pro�le which gives them an in�nite spatial extent. However, recently Rose-

nau and Hyman introduced [3] the concept of compacti�cation or strict localization of solitary

waves. They discovered that in the continuum systems, the solitary waves can be compacti�ed

in the presence of nonlinear dispersion and termed these solitary waves with compact support

as compactons. The possibility of existence of such intrinsics localized modes or breathers with

compact support in discrete nonlinear anharmonic lattice was predicted in recent studies [4, 5].

More recent work [6] has shown that a class of exact continuous compacton solutions of a low

order continuous approximation of the discrete equations of motion, survive in general when

substituted in the corresponding discrete equations. What is remarkable is that, it appears, the

continuous cosine-shape compacton solutions seems to represent quite well breather solutions in

the highly discrete regimes far from the continuous limit. In ref. [7] it is shown that the discrete

compact breathers in the nonlinear anharmonic lattice can be generated in the anti-continuous

limit through a numerically exact procedure and are generally found to be stable.

In all the above studies of compact breathers in discrete lattice, the non linear dispersive

interactions are assumed to be short range and therefore a nearest neighbor approximation is

used. However, there exist physical systems such as ionic and molecular crystals where this

approximation cannot describe appropriately the physical systems. For example, excitations

transfer in molecular crystals and energy transport in biopolymers [8] are due to transition

dipole-dipole interaction with 1
r3

dependence on the distance r. Also, the DNA molecules have

long range Coulomb interaction between them as the molecules contain charged groups. The

compact breathers would be ideal for energy storage since due to the lack of exponential tail they

would not interact until they are in contact with each other, thus increasing their lifetime and

ensuring practical applications such as energy transport, signal processing and communications.

However, in these applications, the long range interaction is important, as, for example, in

nonlinear �ber optics, the long range interaction imposes a strict limitation on the performance

of long haul �ber transmissions [9].

Some studies of solitons and intrinsics localized mode (conventional discrete breathers with

exponential tails) in the presence of long range interaction are known. For example, it has

been shown [10] that solitary waves like kinks or gap solitons are e�ected quantitatively by

the long range interactions. Gaididei et al [11] also considered the e�ect of harmonic nonlocal

interaction potential in a chain with short range anharmonicity and observed the existence of

two types of solitons with characteristically di�erent width and shape for two velocity regions

separated by a gap. Similarly, studies on sine-Gordon systems with long range forces was done

by Gronbech-Jensen et al [10]. Some results along this direction are also known for discrete
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breathers (conventional types). For example, a general proof of the existence of breathers in

d-dimensional lattice with algebraic decaying interaction are considered in [12]. Similarly, for

the discrete nonlinear Schroedinger (DNLS) model with long range interaction varying with the

distance as r�s, it has been shown that [13] for su�ciently large s, all features of the model

are qualititavely the same as the DNLS model with short range (nearest neighbor) interaction,

but for s less than some critical scr there is an interval of bistability. Similarly, Bonart [13]

considered the intrinsic localized modes in the presence of Coulomb interaction. These studies

raised an important question: Can a discrete breather with compact support survive the e�ects

of a long range interaction? In this letter we address this problem. We demonstrate the ex-

istence of discrete breathers with compact support in the anharmonic nonlinear Klein Gordon

lattice with onsite nonlinear substrate potential and with power dependence r�s on the distance

r of the nonlinear dispersive interaction. The stationary state of the systems are studied both

analytically and numerically. We obtain exact analytic compacton breather solutions of the cor-

responding equations of motion in the continuum limit in the presence of long range interaction

and nonlinear substrate potential. These analytic solutions are then used as an initial condition

for the numerical solutions of the discrete equations of motion and numerical simulations show

that within some parameter range the compacton breather solutions survive in the presence

of lattice discreteness and long range anharmonic interactions . The range of the long range

interaction parameter s within which the analytic continuum solutions are shown to exist agrees

quite well with that obtained from the numerical calculations.

2 Equations of motion and exact analytic solutions in the con-

tinuum limit

The model we study is described by the Hamiltonian

H =
X
n

[
p2n
2

+ V (�n)] +
X
n;m

k1

2

(�m � �n)
2

j m� n js1 +

X
n;m

k2

2

(�m � �n)
2

j m� n js2 (1)

where the potential V (�n) is a nonlinear onsite potential, �n(t) � �n is the displacement of

the n-th unit mass oscillator from its equilibrium position at time t, k1 and k2 determine the

strength of the harmonic and anharmonic interaction between the oscillators respectively and s1

and s2 are the long range interaction parameters, being introduced to consider di�erent physical

situations ranging from nearest neighbor (s = 1) , dipole-dipole interaction (s = 3), Coulomb

interaction (s = 1) etc. Tuning the parameters k1 and k2 as well as s1 and s2, we can study

the e�ect of competition between anharmonicity and dispersion and the interplay of the long

range interaction and lattice discreteness and also between harmonic and anharmonic interaction

between the particles. The equations of motion are given by

��n = ���n � ��3n + k1
X
m

(�m � �n)

j m� n js1 +

k2
X
m

(�m � �n)
3

j m� n js2 (2)

3



It is a di�cult problem to obtain the analytic solution to these equations of motion. For

the case of k2 = 0 (i.e. the case of conventional exponentially decaying discrete breathers in

the presence of long range interaction), the analytic solutions have been obtained earlier by

approximate methods like the variational method [13] and lattice Greens' function method [14].

The lattice Green's function method describes only the asymptotic properties of the solutions.

Implementing such methods for the present problem with k2 6= 0 (i.e in the presence of long

range nonlinear dispersive interaction) is a di�cult proposition. However, we realized that if we

are only interested in the properties of the localized solutions with analytic behavior, like the

exponentially localized solutions, compactons etc., then such solutions in the continuum limit

can easily be obtained by a simple Taylor series expansion of the discrete equations of motion.

Accordingly, we rewrite eq.(2) as

��n = ���n � ��3n + k1

1X
p=1

(�n+p + �n�p � 2�n)

j p js1 +

k2

1X
p=1

[(�n+p � �n)
3 + (�n�p � �n)

3]

j p js2 (3)

and expand �n�p in terms of Taylor series as

�n�p = �(x)� p�0(x) +
p2

2
�00(x)

�p
3

6
�000(x) +

p4

24
�0000(x) + :::::: (4)

To show that the Taylor series expansion as given above can actually give the analytic localized

solutions, we used this expansion to reproduce the exponentially localized solutions of the DNLS

with harmonic long range interaction which was earlier obtained by Rasmussen et al using

the approximate variational method [13]. For this we substitute equation (4) above in the

corresponding discrete equations of motion of DNLS with harmonic long range interaction (eq.(4)

in [13]) and then it can easily be checked that the corresponding continuum equations of motion

have localized solutions given by �(x) =
p
2�sech[

p
�(x+x0)
J�(s�2) ], where �(s) is the Riemann zeta

function, s is the long range interaction parameter and J is the strength of the long range

harmonic interaction. We have also checked that the energy and the excitation number N of the

system which corresponds to this localized solution also agrees exactly with the corresponding

values obtained with the variational method (eq.(18) in [13]). We now show that the compact

breather solutions of the discrete equations of motion (eq.(2)) in the continuum limit can also

be obtained using the Taylor series expansion as above. For this we substitute eq.(4) in eq.(3)

above to get the corresponding continuum equations for the system as ( we �rst consider the

case of k1 = 0, i.e. no harmonic interaction)

@2�

@t2
= ���� ��3 + 3k2�(s2 � 4)(

@�

@x
)2
@2�

@x2
(5)

To get the compact breather solution we use the ansatz

�(x; t) = y(x)G(t) (6)
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Substituting this in eq.(5) we get the equations for y(x) and G(t) respectively as

3k2�(s2 � 4)(
@y

@x
)2
@2y

@x2
� �y3 + Cy = 0

�G+ �G+ CG3 = 0 (7)

It can easily be checked that the above equation supports compacton breather solutions given

by

�(x; t) = A cos(Bx) cn[(A2 + �)
1

2

p
2t; k2];

for j Bx j � �

2
= 0; otherwise: (8)

where k = A

[2(�+A2)]
1

2

, cn is Jacobi elliptic function of time and B is the inverse width of the

compacton given by

B = [
�

3k2�(s2 � 4)
]
1

4 (9)

From eq.(9) we see that for a real width of the compacton, the compacton breather solutions

given by eq.(8) above exist only for the long range interaction parameter s2 within the ranges

s2 > 5 and 0 < s2 < 2.

Now we consider the case when the harmonic displacive interaction is present (i.e. k1 6= 0).

In the absence of long range interaction, it has been shown [6, 7] that the harmonic displacive

interaction destroys the compactons in the discrete anharmonic lattice by progressively turning

compact breathers into conventional exponentially decaying ones. However, in the presence

of long range interaction, the situation may be di�erent. To examine this, we introduced in

the Hamiltonian (eq.(2)) two sets of parameter (k1; s1) and (k2; s2), so that by suitably tuning

these parameters we can compare the e�ects of di�erent contributions from the harmonic and

anharmonic terms in forming the stable compacton breather solutions. Using the Taylor series

expansion as above, the continuum equations in this case is given by

@2�

@t2
= ���� ��3 + k1[�(s1 � 2)

@2�

@x2
+

1

12
�(s2 � 4)

@4�

@x4
] + 3k2�(s2 � 4)(

@�

@x
)2
@2�

@x2
(10)

Using the ansatz �(x; t) = y(x)coswt for the compacton breather solutions, the continuoum

equations reduces to

�2y � 3

4
�y3 + k1[�(s1 � 2)

@2y

@x2
+

1

12
�(s2 � 4)

@4y

@x4
] + 3k2�(s2 � 4)(

@y

@x
)2
@2y

@x2
= 0 (11)

where �2 = w2 � � and we have used the rotating wave approximation to get to this equation.

It can again be checked that this equation has compacton solutions of the form

y(x) = Acos(Bx); for j Bx j� �

2
= 0; otherwise (12)
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where

B = [
�

4k2�(s2 � 4)
]
1

4

A2 =
4

3�
[�2 � k1�(s1 � 2)

s
�

4k2�(s2 � 4)
+

�k1�(s1 � 4)

48k2�(s2 � 4)
] (13)

Thus, from the condition of real A and B we see that for the appropriate choice of parameter

values, compacton breather solutions of the form �(x; t) = Acos(Bx)coswt may exist in the

continuum limit for the system containing both the harmonic and anharmonic long range dis-

persive interactions. We would like to point out that the �rst derivatives of these solutions is

discontinuous at the edge and hence the compacton solutions presented here must be understood

in the weak sense. The robustness of these compacton solutions are yet unknown. However, as

reported by Rosenau (see ref.12 in [5]), extensive numerical studies of the continuum equations

indicate that compactons smoothness at the edge is not indicative of their stability.

3 Numerical analysis

To see whether the above analytic continuum compacton breather solutions survive in the dis-

crete lattice, we have obtained the numerical solutions of the discrete equations of motion

(eq.(2)). The initial condition for the numerical solutions is chosen as �n(t = 0) = Acos(Bn)

where B is the inverse width of the continuum compacton breather as given above. The ini-

tial velocity is taken to be zero. To take into account the e�ect of the long range interaction

e�ectively, the numerical simulations are done over a large lattice with N = 1000 lattice sites.

Similarly, to check the stability of the solutions over time, the solutions are evolved over a

very long time. First we consider the case when no harmonic terms are present, i.e. k1 = 0.

Fig.(1) shows the evolution of the lattice pro�le of the compacton breather solutions over a time

t = 150T , where T is the period of the compacton breather. The initial width of the compactons

are chosen to be Lc = �
B
= 6 times the lattice spacing, where B is given by eq.(9). The long

range parameter s2 is chosen to be s2 = 6, the amplitude as 0.1 and the results are plotted in

Fig.(1a). As can be seen from these �gures, the initial analytic continuum compact breather

solutions (eq.(8)) remains stable even after a very long time (t=150T) in the discrete lattice.

Fig.(1b) is the same as in Fig.(1a) but with s2 = 7. Again we see that the compact breather

solutions remain very stable. We have checked that the compacton breather solutions for other

values of the long range parameter s2 � 4 also remains stable. We have also considered the

compact breather solutions with width Lc = 30 times the lattice spacing. In this case the re-

sults of the numerical simulations show that although the solutions remain stable initially for a

time t = 50T (Fig.(2a)), it loses its compact support and develops some structures near its edge

after a larger time t = 150T (Fig.(2b)). We also observe that the stability of the compacton

breather solutions in the discrete lattice depends on the amplitude of the solutions. For exam-

ple, the stable compacton solutions with amplitude 0.1 as shown in Fig.(1a) becomes unstable

when the amplitude is increased to 1.2. This is shown in Fig.(3). Similarly, from the numerical

simulations we �nd that the compact breather solutions are also stable for parameter s within
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the parameter range s < 4 but with amplitude much smaller than similar solutions for s > 4.

Fig.(1c) shows the discrete compacton breather solution with amplitude A = 0:01 for s = 1.

This solution becomes unstable if the corresponding amplitude is increased to 0.1 as in Fig.(1a)

and Fig.(1b). Finally, the results of the numerical simulations of the discrete equations of motion

in the presence of both the harmonic and anharmonic long range dispersive interactions (both

k1; k2 6= 0) again shows that the discrete compacton breather solutions, even though stable for

a time t = 50T initially, loses its compact structure after about t = 150T . This is shown in Fig.

(4) for the parameter values s1 = s2 and k1 < k2 (Fig.(4a)) and s1 > s2 and k1 < k2 (Fig.(4b)).

4 Conclusions

In conclusion, we have examined here the question of existence and stability of the compacton

like breather solutions in the nonlinear anharmonic lattice with nonlocal dispersive interaction

with power dependence r�s on the distance. Using a simple Taylor series expansion we derive

the equations of motion in the continuum limit and show that the resulting equations support

compacton breather solutions in the presence of the nonlocal dispersive interaction. We then

numerically solve the discrete equations of motion and observe that the existence and stability

of the compacton like breathers in the anharmonic lattice with long range interaction depends

crucially on the value of the long range interaction parameter s as well as on the amplitude and

width of the solutions. In absence of the harmonic dispersive interaction, the stable compacton

like discrete breathers exist for certain ranges of the long range interaction parameter (s > 4).

For s < 4, the simulations on the discrete lattice show that the compacton like breather solutions

are stable but with much smaller amplitude than that for s > 4. This might indicate that

there may be other kinds of solutions (non compact type) for this parameter range. This is

also suggested from the results of the earlier studies on harmonic lattice (DNLS) with long

range interactions of the type r�s [13, 14], that, there is a transition from the exponential

decaying solutions to algebraic decaying solutions around the parameter value s = 3. Finally, we

considered the e�ect of the nonlocal harmonic interaction on the stable compactons as obtained

above. We �nd that, even though the solutions are stable initially, it starts developing a tail

near the edge of the compacton, thereby destroying the compact nature of the solutions. This is

similar to the results obtained from the earlier studies of discrete compacton breathers without

the long range interaction [6, 7] which showed that the presence of the harmonic dispersive

interaction progressively turns compact breathers to conventional exponentially breathers.
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Figure 1: Plot of temporal behaviour of spatial pro�le of a compacton breather of width Lc =
6 , (a) s2 = 6, A=0.1 (b) s2 = 7, A=0.1 (c) s2 = 1, A=0.01. The central site is at N=500. The
solutions are stable.
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Figure 2: Same as in Fig.(1a) but with Lc = 30; temporal evolutions after (a) t=50T and (b)
t=150T. The initial spatial pro�le of this large width compacton breather loses its shape near
its edges.
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Figure 3: Same as in Fig.(1a) but with amplitude A=1.2. The initial compacton loses its shape
and develops a tail at the edge.
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Figure 4: Plot of the temporal evolution of spatial pro�le of a compacton breather in the presence
of both harmonic and anharmonic long range interactions. Here Lc = 6, N=1000 and t=150T,
for (a) s1 = s2 and k1 < k2 (b) s1 > s2 and k1 < k2. The initial compacton solutions loses its
shape after a long time.
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