Massively parallel biophysical molecular dynamics simulations, coupled with efficient methods, promise to open biologically significant time scales for study. In order to promote efficient fine-grained parallel algorithms with low communication overhead, the fast degrees of freedom in these complex systems can be divided into sets of rigid bodies. Here, a novel Hamiltonian form of a minimal, nonsingular representation of rigid body rotations, the unit quaternion, is derived, and a corresponding reversible, symplectic integrator is presented. The novel technique performs very well on both model and biophysical problems in accord with a formal theoretical analysis given within, which gives an explicit condition for an integrator to possess a conserved quantity, an explicit expression for the conserved quantity of a symplectic integrator, the latter following and in accord with Calvo and Sanz-Sarna, Numerical Hamiltonian Problems (1994), and extension of the explicit expression to general systems with a flat phase space