32 research outputs found

    Technical note: On the intercalibration of HIRS channel 12 brightness temperatures following the transition from HIRS 2 to HIRS 3/4 for ice saturation studies

    Get PDF
    For studies of trends in ice supersaturation in the upper troposphere we need very long time series of upper tropospheric humidity. The set of HIRS channel 12 satellite data can be used for this purpose, since Shi and Bates (2011) had provided an intercalibrated time series of channel 12 brightness temperatures. In the current paper we improve the intercalibration at the low tail of brightness temperatures, which leads to a more homogeneous time series of upper-tropospheric humidities

    Ozone, DNA-active UV radiation, and cloud changes for the near-global mean and at high latitudes due to enhanced greenhouse gas concentrations

    Get PDF
    This study analyses the variability and trends of ultraviolet-B (UV-B, wavelength 280–320 nm) radiation that can cause DNA damage. The variability and trends caused by climate change due to enhanced greenhouse gas (GHG) concentrations. The analysis is based on DNA-active irradiance, total ozone, total cloud cover, and surface albedo calculations with the European Centre for Medium-Range Weather Forecasts – Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) chemistry–climate model (CCM) free-running simulations following the RCP 6.0 climate scenario for the period 1960–2100. The model output is evaluated with DNA-active irradiance ground-based measurements, satellite SBUV (v8.7) total-ozone measurements, and satellite MODerate-resolution Imaging Spectroradiometer (MODIS) Terra cloud cover data. The results show that the model reproduces the observed variability and change in total ozone, DNA-active irradiance, and cloud cover for the period 2000–2018 quite well according to the statistical comparisons. Between 50∘ N–50∘ S, the DNA-damaging UV radiation is expected to decrease until 2050 and to increase thereafter, as was shown previously by Eleftheratos et al. (2020). This change is associated with decreases in the model total cloud cover and negative trends in total ozone after about 2050 due to increasing GHGs. The new study confirms the previous work by adding more stations over low latitudes and mid-latitudes (13 instead of 5 stations). In addition, we include estimates from high-latitude stations with long-term measurements of UV irradiance (three stations in the northern high latitudes and four stations in the southern high latitudes greater than 55∘). In contrast to the predictions for 50∘ N–50∘ S, it is shown that DNA-active irradiance will continue to decrease after the year 2050 over high latitudes because of upward ozone trends. At latitudes poleward of 55∘ N, we estimate that DNA-active irradiance will decrease by 8.2 %±3.8 % from 2050 to 2100. Similarly, at latitudes poleward of 55∘ S, DNA-active irradiance will decrease by 4.8 % ± 2.9 % after 2050. The results for the high latitudes refer to the summer period and not to the seasons when ozone depletion occurs, i.e. in late winter and spring. The contributions of ozone, cloud, and albedo trends to the DNA-active irradiance trends are estimated and discussed.</p

    Detecting volcanic sulfur dioxide plumes in the Northern Hemisphere using the Brewer spectrophotometer, other networks, and satellite observations

    Get PDF
    This paper demonstrates that SO 2 columnar amounts have significantly increased following the five largest volcanic eruptions of the past decade in the Northern Hemisphere. A strong positive signal was detected by all the existing networks either ground based (Brewer, EARLINET, AirBase) or from satellites (OMI, GOME-2). The study particularly examines the adequacy of the existing Brewer network to detect SO 2 plumes of volcanic origin in comparison to other networks and satellite platforms. The comparison with OMI and 45 GOME-2 SO 2 space-borne retrievals shows statistically significant agreement between the Brewer network data and the collocated satellite overpasses. It is shown that the Brewer instrument is capable of detecting significant columnar SO 2 increases following large volcanic eruptions, when SO 2 levels rise well above the instrumental noise of daily observations, estimated to be of the order of 2 DU. A model exercise from the MACC project shows that the large increases of SO 2 over Europe following the Bárðarbunga eruption in Iceland were not caused by local sources or ship emissions but are clearly linked to the eruption. We propose that by combining Brewer data with that from other networks and satellites, a useful tool aided by trajectory analyses and modeling could be created which can be used to forecast high SO 2 values both at ground level and in air flight corridors following future eruptions

    The contribution and weighting functions of radiative transfer - theory and application to the retrieval of upper-tropospheric humidity

    Get PDF
    Several interesting problems in remote sensing can be traced back to the question of the origin along the line of sight of the registered photons. In this paper we revive old concepts that directly follow from the equation of radiative transfer, namely the contribution and weighting functions. We give them, however, a new mathematical form by transforming them into a pair of probability density functions which have the advantage that they can be used in a more flexible manner. We derive these functions, demonstrate a simple relation between them and show how they can be used in principle. Then we proceed with simple applications to a case of upper-tropospheric humidity (UTH) retrieval. In particular, we show how the mean emission pressure level and mean emission temperature change with increasing UTH. We show that the mean emission pressure increases with increasing humidity and remains almost unchanged for UTH values greater than 50 %. The mean emission temperature is decreasing exponentially as UTH increases. The sensitivities of the mean emission pressure to various quantities, e.g. the temperature lapse rate, or retrieval situations, e.g. whether UTH or UTH with respect to ice is considered or which of two different versions of a receiver is used, is generally small compared to the 2σp-width of the layer. The relation of the contribution and weighting functions to Jacobians is discussed as well. We note that the dependence of the mean emission pressure level and other statistical quantities can be formulated using the radiances or brightness temperatures directly. The new method thus offers additional possibilities for interpretation of data from passive remote sensing, and examples are given. In addition of deriving the desired product (for instance, UTH) one can derive and map the mean emission location, its width, and other physical properties like mean temperature of the emission layer. The necessary probability density functions are contained in the solution of the radiative transfer equation and can thus be obtained from runs of the corresponding models. We recommend that radiative transfer models be equipped with facilities to compute and output the contribution and weighting functions

    A review of various strategies for contrail avoidance

    Get PDF
    A review is given of various contrail avoidance strategies that have been developed since the publication of the Intergovernmental Panel on Climate Change (IPCC) special report on Aviation and the Global Atmosphere. The goal of this review is to provide an overview of the various options for contrail mitigation, to describe the state of the art, and to indicate future directions for research
    corecore