61 research outputs found

    BC political economy and the challenge of shale gas: Negotiating a post-staples trajectory

    Get PDF
    Shale gas, a type of natural gas extracted from shale rock deposits deep underground, is poised to become the latest in a long history of staples industries in the British Columbian economy. However, its development poses challenges for the future trajectory of BC’s economy and society. BC’s economy, values, and political imaginary have increasingly turned towards a post-staples trajectory based on economic diversification and a cultural shift towards environmental and cosmopolitan values. In considering what is at stake in the development of shale gas, we locate the industry in the historical context of BC’s economic, regulatory, and political transitions toward a post-staples society, and assess what political, environmental, and economic challenges arise from the disconnect between a staples industry and a post-staples society. We conclude that for shale gas development to be viable and profitable for BC’s economy, the industry must be regulated to ensure the benefits that accrue from shale gas development (in terms of revenue, sustainable employment, and stable northern development) further BC’s nascent post-staples trajectory of development

    Enhancing the removal of pollutants from coke wastewater by bioaugmentation: a scoping study

    Get PDF
    BACKGROUND Bioaugmentation and biostimulation were investigated for their ability to improve the removal of thiocyanate (SCN-), polycyclic aromatic hydrocarbons (PAHs), phenol and trace metals in coke wastewater. Additionally, the ability of the microorganisms supplemented with the bioaugmentation product to survive in a simulated river water discharge was evaluated. RESULTS A commercially available bioaugmentation product composed mainly of Bacillus sp. was mixed with activated sludge biomass. A dose of 0.5 g/L increased the removal of Ʃ6PAHs (sum of fluoranthene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene and benzo[g,h,i]perylene) by 51% and reduced SCN- below 4 mg/L enabling compliance with the EU Industrial Emissions Directive (IED). Biostimulation (supplementing micronutrients and alkalinity) allowed compliance for both SCN- and phenol (<0.5 mg/L). Bacillus sp. accounted for 4.4% of the microbial population after 25 hours (1.5 g/L dose) which declined to 0.06% after exposure to river water (24 hours). Exposure of the activated sludge biomass to river water resulted in a 98.6% decline in viable cell counts. CONCLUSION To comply with the IED, bioaugmentation and biostimulation are recommended for the treatment of coke wastewater to enable an effluent Ʃ6PAHs of 6.6 μg/L, 0.3 mg/L phenol and 1.2 mg/L SCN-. Such techniques are not anticipated to impact on downstream river water quality

    Brief Report: Training load, salivary immunoglobulin A and illness incidence in elite paratriathletes

    Get PDF
    Purpose: To gain an exploratory insight into the relationship between training load (TL), salivary secretory immunoglobulin A (sIgA) and upper respiratory tract illness (URI) in elite paratriathletes. Methods: Seven paratriathletes were recruited. Athletes provided weekly saliva samples for the measurement of sIgA over 23 consecutive weeks (February - July) and a further 11 consecutive weeks (November – January). sIgA was compared to individuals’ weekly training duration, external TL and internal TL, utilising time spent in pre-determined heart rate zones. Correlations were assessed via regression analyses. URI was quantified via weekly self-report symptom questionnaire. Results: There was a significant negative relationship between athletes’ individual weekly training duration and sIgA secretion rate (p = 0.028) with changes in training duration accounting for 12.7% of the variance (quartiles: 0.2%, 19.2%). There was, however, no significant relationship between external or internal TL and sIgA parameters (p ≥ 0.104). There was no significant difference in sIgA when URI was present or not (101% vs 118% healthy median concentration; p ≥ 0.225); likewise, there was no difference in sIgA when URI occurred within two weeks of sampling or not (83% vs 125% healthy median concentration; p ≥ 0.120). Conclusions: Paratriathletes’ weekly training duration significantly affects sIgA secretion rate, yet we did not find a relationship between external or internal TL and sIgA parameters. Further, it was not possible to detect any link between sIgA and URI occurrence which throws into question the potential of using sIgA as a monitoring tool for early detection of illness

    Characterisation of thiocyanate degradation in a mixed culture activated sludge process treating coke wastewater

    Get PDF
    Microbial degradation of thiocyanate (SCN−) has been reported to suffer from instability highlighting the need for improved understanding of underlying mechanisms and boundaries. Respirometry, batch tests and DNA sequencing analysis were used to improve understanding of a mixed culture treating coke wastewater rich in SCN−. An uncultured species of Thiobacillus was the most abundant species (26%) and displayed similar metabolic capabilities to Thiobacillus denitrificans and Thiobacillus thioparus. Thiocyanate was hydrolysed/oxidised to NH4+-N, HCO3− and SO42−. Nevertheless, at 360–2100 mg SCN−/L a breakdown in the degradation pathway was observed. Respirometry tests demonstrated that NH4+-N was inhibitory to SCN− degradation (IC50: 316 mg/L). Likewise, phenol (180 mg/L) and hydroxylamine (0.25–16 mg/L) reduced SCN− degradation by 41% and ca. 7%, respectively. The understanding of the SCN− degradation pathways can enable stable treatment efficiencies and compliance with effluent of <4 mg SCN/L, required by the Industrial Emissions Directive

    Deltaproteobacteria (Pelobacter) and Methanococcoides are responsible for choline-dependent methanogenesis in a coastal saltmarsh sediment

    Get PDF
    Coastal saltmarsh sediments represent an important source of natural methane emissions, much of which originates from quaternary and methylated amines, such as choline and trimethylamine. In this study, we combine DNA stable isotope probing with high throughput sequencing of 16S rRNA genes and 13C2-choline enriched metagenomes, followed by metagenome data assembly, to identify the key microbes responsible for methanogenesis from choline. Microcosm incubation with 13C2-choline leads to the formation of trimethylamine and subsequent methane production, suggesting that choline-dependent methanogenesis is a two-step process involving trimethylamine as the key intermediate. Amplicon sequencing analysis identifies Deltaproteobacteria of the genera Pelobacter as the major choline utilizers. Methanogenic Archaea of the genera Methanococcoides become enriched in choline-amended microcosms, indicating their role in methane formation from trimethylamine. The binning of metagenomic DNA results in the identification of bins classified as Pelobacter and Methanococcoides. Analyses of these bins reveal that Pelobacter have the genetic potential to degrade choline to trimethylamine using the choline-trimethylamine lyase pathway, whereas Methanococcoides are capable of methanogenesis using the pyrrolysine-containing trimethylamine methyltransferase pathway. Together, our data provide a new insight on the diversity of choline utilizing organisms in coastal sediments and support a syntrophic relationship between Bacteria and Archaea as the dominant route for methanogenesis from choline in this environment

    Functional antibody and T-cell immunity following SARS-CoV-2 infection, including by variants of concern, in patients with cancer: the CAPTURE study

    Get PDF
    Patients with cancer have higher COVID-19 morbidity and mortality. Here we present the prospective CAPTURE study (NCT03226886) integrating longitudinal immune profiling with clinical annotation. Of 357 patients with cancer, 118 were SARS-CoV-2-positive, 94 were symptomatic and 2 patients died of COVID-19. In this cohort, 83% patients had S1-reactive antibodies, 82% had neutralizing antibodies against WT, whereas neutralizing antibody titers (NAbT) against the Alpha, Beta, and Delta variants were substantially reduced. Whereas S1-reactive antibody levels decreased in 13% of patients, NAbT remained stable up to 329 days. Patients also had detectable SARS-CoV-2-specific T cells and CD4+ responses correlating with S1-reactive antibody levels, although patients with hematological malignancies had impaired immune responses that were disease and treatment-specific, but presented compensatory cellular responses, further supported by clinical. Overall, these findings advance the understanding of the nature and duration of immune response to SARS-CoV-2 in patients with cancer

    Fat emulsion intragastric stability and droplet size modulate gastrointestinal responses and subsequent food intake in young adults

    Get PDF
    Background: Intragastric creaming and droplet size of fat emulsions may affect intragastric behavior and gastrointestinal and satiety responses.Objectives: We tested the hypotheses that gastrointestinal physiologic responses and satiety will be increased by an increase in intragastric stability and by a decrease in fat droplet size of a fat emulsion.Methods: This was a double-blind, randomized crossover study in 11 healthy persons [8 men and 3 women, aged 24 ± 1 y; body mass index (in kg/m2): 24.4 ± 0.9] who consumed meals containing 300-g 20% oil and water emulsion (2220 kJ) with 1) larger, 6-μm mean droplet size (Coarse treatment) expected to cream in the stomach; 2) larger, 6-μm mean droplet size with 0.5% locust bean gum (LBG; Coarse+LBG treatment) to prevent creaming; or 3) smaller, 0.4-μm mean droplet size with LBG (Fine+LBG treatment). The participants were imaged hourly by using MRI and food intake was assessed by using a meal that participants consumed ad libitum.Results: The Coarse+LBG treatment (preventing creaming in the stomach) slowed gastric emptying, resulting in 12% higher gastric volume over time (P < 0.001), increased small bowel water content (SBWC) by 11% (P < 0.01), slowed appearance of the 13C label in the breath by 17% (P < 0.01), and reduced food intake by 9% (P < 0.05) compared with the Coarse treatment. The Fine+LBG treatment (smaller droplet size) slowed gastric emptying, resulting in 18% higher gastric volume (P < 0.001), increased SBWC content by 15% (P < 0.01), and significantly reduced food intake by 11% (P < 0.05, equivalent to an average of 411 kJ less energy consumed) compared with the Coarse+LBG treatment. These high-fat meals stimulated substantial increases in SBWC, which increased to a peak at 4 h at 568 mL (range: 150–854 mL;P < 0.01) for the Fine+LBG treatment.Conclusion: Manipulating intragastric stability and fat emulsion droplet size can influence human gastrointestinal physiology and food intake

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p&lt;0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p&lt;0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p&lt;0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP &gt;5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification
    • …
    corecore