116 research outputs found

    An assessment of scup (Stenotomus chrysops) and black sea bass (Centropristas striata) discards in the directed otter trawl fisheries in the Mid-Atlantic Bight

    Get PDF
    This study was undertaken to re-assess the level of scup (Stenotomus chrysops) discards by weight and to evaluate the effect of various codend mesh sizes on the level of scup discards in the winter-trawl scup fishery. Scup discards were high in directed scup tows regardless of codend mesh — typically one to five times the weight of landings. The weight of scup discards in the present study did not differ significantly from that recorded in scup-targeted tows in the NMFS observer database. Most discards were required as such by the 22.86 cm TL (total length) fish-size limit for catches. Mesh sizes ≤12.7 cm, including the current legal mesh size (11.43 cm) did not adequately filter out scup smaller than 22.86 cm. The median length of scup discards was about 19.83 cm TL. Lowering the legal size for scup from 22.86 to 19.83 cm TL would greatly reduce discard mortality. Scup discards were a small fraction (0.4%) of black sea bass (Centropristis striata) landings in blacksea-bass−targeted tows. The black sea bass fishery is currently regulated under the small-mesh fishery gearrestricted area plan in which fishing is prohibited in some areas to reduce scup mortality. Our study found no evidence to support the efficacy of this management approach. The expectations that discarding would increase disproportionately as the trip limit (limit [in kilograms] on catch for a species) was reached towards the end of the trip and that discards would increase when the trip limit was reduced from 4536 kg to 454 kg at the end of the directed fishing season were not supported. Trip limits did not significantly affect discard mortality

    Influence of Short-Term Variations in Food on Survival of Crassotrea Gigas Larvae: A Modeling Study

    Get PDF
    A biochemically-based model was developed to simulate the growth, development, and metamorphosis of larvae of the Pacific oyster, Crassostrea gigas. The model defines larvae in terms of their protein, lipid, carbohydrate, and ash content and includes variation in growth efficiency and egg quality to better simulate cohort population dynamics. Changes in tissue composition occur as the larva grows and in response to the biochemical composition of the food. The premise behind this modeling study was that certain periods of larval life are more critical than others with respect to the availability of food and that food quality is as important as food quantity. The results of the simulations indicate that critical periods do exist, but that the period of larval life which is critical depends upon the composition of the available food supply and how it varies over time. Overall, the most critical time is late in larval life, near the time of metamorphosis. At this point, some variations in food quality are particularly efficacious, others particularly disastrous. But, under certain circumstances, events early or midway in larval life also dramatically change cohort survival. Simulations show that cohort survival varies in a relatively predictable way when salinity or food quantity vary. Both control time-integrated food supply to the larva by varying the amount of food ingested. Reduction of time-integrated ingestion reduces survival. Larvae with high growth efficiency are more successful, as are larvae coming from large eggs. The simple effect of time-integrated food presents a stark contrast to the complexity introduced by varying food quality. Simulations indicate that it is late in larval life when larvae are most sensitive to changes in food quality. Increased protein at this time always improves survival. Increased lipid is most efficacious midway in larval life, but also exerts a positive impact late in larval life. Variations in carbohydrate are relatively inconsequential in affecting larval survival. Simulations in which food quantity and food quality vary independently show that cohort survival is sensitive to the exact timing and type of environmental change. Transient changes in food quantity influence survival primarily by varying the length of larval life. Transient changes in food quality, on the other hand, can produce large changes in survivorship by restricting the range of genotypes in the cohort that can survive, as well as by varying larval life span. The simulations support the adaptive advantage of larval cohorts with a relatively wide range of genotypes and suggest the important influence of variations in food quality in maintaining genetic variability

    A Modelling Study of the Influence of Environment and Food Supply on Survival of Crassostrea gigas Larvae

    Get PDF
    A biochemically based model was developed to simulate the growth, development, and metamorphosis of larvae of the Pacific oyster (Crassostrea gigas). The unique characteristics of the model are that it: (1) defines larvae in terms of their protein, neutral lipid, polar lipid, carbohydrate, and ash content; (2) tracks weight separately from length to follow larval condition; and (3) includes genetic variation in growth efficiency and egg quality to better simulate cohort population dynamics. The model includes parameterizations for filtration, ingestion, and respiration, which determine larval growth rate, and processes controlling larval mortality and metamorphosis. Changes in larval tissue composition occur as the larva grows and in response to the biochemical composition of the food. Simulations of larval growth indicate that departures of temperature, salinity, or food content from optimum levels reduce larval cohort survival, either because of metabolic constraints that result in death, unsuccessful metamorphosis, or increased predation resulting from increased larval lifespan. Temperatures and salinities near optimal values improve larval survival at low food concentration by increasing ingestion rate or growth efficiency. Also, survival at a given food concentration can vary widely depending on food composition, which determines food quality. The simulations suggest that the ratio of carbohydrate + lipid-to-protein may best describe the overall food quality, with optimal food compositions being characterized by ratios near 1.2 to 1.4 over a range of food concentrations. In contrast, food compositions containing too much or too little protein reduce larval survival, even at saturating food concentrations. In simulations emphasizing genetic variability within the cohort, larvae with high growth efficiency originating from large eggs out-perform other egg quality-growth efficiency combinations over a wide range of temperature, salinity, and food contents. As a consequence, suboptimal temperature, salinity, or food content compresses genetic variation by uniformly favouring larvae from large eggs with a high growth efficiency. However, the larval survival obtained from simulations that use a range of food qualities is representative of a much broader range of genetic types. Thus, the simulations support the supposition that food quality is an important variable controlling the survival and genetic variability of C. gigas larval cohorts. (C) 2004 International Council for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved

    A Biochemically Based Model of the Growth and Development of Crassostrea Gigas Larvae

    Get PDF
    A biochemically based model was developed to simulate the growth, development and metamorphosis of larvae of the Pacific oyster, Crassostrea gigas. The model is unique in that (1) it defines larvae in terms of their protein, neutral lipid, polar lipid, carbohydrate, and ash content; (2) it tracks weight separately from length to follow larval condition index; and (3) it includes genetic variation in growth efficiency and egg quality to better simulate cohort population dynamics. The model includes parameterizations for larval filtration, ingestion, and respiration, which determine growth rate, and processes controlling larval mortality and metamorphosis. The initial biochemical content of the larva is determined by the composition of the egg. Changes in the initial ratios of protein, carbohydrate, neutral lipid, and polar lipid occur in response to the biochemical composition of available food as the larva grows. Modeling the process of metamorphosis requires a series of size-based and biochemically based triggers: (1) larvae become potentially competent to metamorphose at 275 mum, following a decrease in filtration rate at 250 mum; (2) larvae become competent to metamorphose when a daily decline in neutral lipid of 25% or more occurs; and (3) larvae metamorphose successfully if neutral lipid stores exceed polar lipid stores. Although based on simple biochemistry, the model succeeds in simulating such basic characteristics of C. gigas larval development and metamorphosis as larval life span and size structure at metamorphosis and the influence of egg and food quality and food quantity on survival. These results suggest that simple biochemical constructs may encompass the biochemical transitions most prominent in determining cohort success. Simulations of larval development show that for the smallest larvae, assimilation does not provide adequate resources to explain observed growth, although measured filtration rates would indicate otherwise. Egg lipid stores are needed to sustain the larva, The simulations also identify egg sizes in the range 37-73 mum to be viable, very similar to observations. Egg sizes outside this range are predicted to be nonviable due to lipid deficiencies in early larval life. Similarly, simulations identify upper and lower genetic limits on growth efficiency beyond which larvae cannot acquire sufficient neutral lipid stores to successfully metamorphose. As food supply declines, animals with high growth efficiencies are selected in the simulation. Low-protein food diets are predicted to increase larval survival. High-protein diets result in insufficient carbohydrate and neutral lipid to cover metabolic and storage needs. Thus, the influence of growth efficiency is nonrandomly distributed across egg size and respiration rate and the influence seems to be mediated in part by food quantity and to a larger measure by food quality

    White Matter Hyperintensity Associations with Cerebral Blood Flow in Elderly Subjects Stratified by Cerebrovascular Risk

    Get PDF
    Objective: This study aims to add clarity to the relationship between deep and periventricular brain white matter hyperintensities (WMHs), cerebral blood flow (CBF), and cerebrovascular risk in older persons. Methods: Deep white matter hyperintensity (dWMH) and periventricular white matter hyperintensity (pWMH) and regional gray matter (GM) and white matter (WM) blood flow from arterial spin labeling were quantified from magnetic resonance imaging scans of 26 cognitively normal elderly subjects stratified by cerebrovascular disease (CVD) risk. Fluidattenuated inversion recovery images were acquired using a high-resolution 3-dimensional (3-D) sequence that reduced partial volume effects seen with slicebased techniques. Results: dWMHs but not pWMHs were increased in patients at high risk of CVD; pWMHs but not dWMHs were associated with decreased regional cortical (GM) blood flow. We also found that blood flow in WM is decreased in regions of both pWMH and dWMH, with a greater degree of decrease in pWMH areas. Conclusions: WMHs are usefully divided into dWMH and pWMH regions because they demonstrate differential effects. 3-D regional WMH volume is a potentially valuable marker for CVD based on associations with cortical CBF and WM CBF

    The Role of Racial Identity and Implicit Racial Bias in Self-Reported Racial Discrimination: Implications for Depression Among African American Men

    Get PDF
    Racial discrimination is conceptualized as a psychosocial stressor that has negative implications for mental health. However, factors related to racial identity may influence whether negative experiences are interpreted as instances of racial discrimination and subsequently reported as such in survey instruments, particularly given the ambiguous nature of contemporary racism. Along these lines, dimensions of racial identity may moderate associations between racial discrimination and mental health outcomes. This study examined relationships between racial discrimination, racial identity, implicit racial bias, and depressive symptoms among African American men between 30 and 50 years of age (n = 95). Higher racial centrality was associated with greater reports of racial discrimination, while greater implicit anti-Black bias was associated with lower reports of racial discrimination. In models predicting elevated depressive symptoms, holding greater implicit anti-Black bias in tandem with reporting lower racial discrimination was associated with the highest risk. Results suggest that unconscious as well as conscious processes related to racial identity are important to consider in measuring racial discrimination, and should be integrated in studies of racial discrimination and mental health

    Estimating the Sex Composition of the Summer Flounder Catch using Fishery-Independent Data

    Get PDF
    Models that account for sex-specific behavior and population dynamics are becoming more common in the stock assessment of sexually dimorphic fishes. However, such models can be data intensive and require some knowledge or assumptions about the sex ratio of fishery landings. A recent stock assessment review of Summer Flounder Paralichthys dentatus identified the need to account for sex-specific fishing mortality in the assessment model; however, no data on the sex composition of the catch were available. Fishery-independent, sex-specific information for this species is collected annually by the National Marine Fisheries Service\u27s Northeast Fisheries Science Center during their bottom trawl survey. Sex at age from the survey could be applied to the fishery landings if the probability of landing a given sex at a given age is equivalent for fish collected by the survey and those in the landings. To generate the first regionally comprehensive database on the sex ratio of Summer Flounder landings and to determine the efficacy of using survey sex-at-age keys to estimate the sex of landed fish, we recorded the sex composition of the commercial and recreational catches of Summer Flounder (n = 31,912) in 2010 and 2011. When (1) trawl survey length data were left-truncated to simulate the minimum retention sizes in the fisheries and (2) age-length keys generated from fishery-dependent data were applied to length frequency distributions from the survey to simulate the growth rates of landed fish, the sex-at-age pattern in the survey-derived data closely resembled the patterns in the catch. However, statistically significant differences in sex at age remained between the catch and the survey-derived data. We hypothesize that these differences are attributable to differences in the spatiotemporal distributions of the sexes and of the survey and fishing effort

    Hepatitis B virus infection in post-vaccination South Africa : occult HBV infection and circulating surface gene variants

    Get PDF
    No abstract availableNational Health Laboratory Services (NHLS)Research Trust [grant number: GRANT004_94329] and the Poliomyelitis Research Foundation (PRF) [grant number: 11/74 (MSc)].http://www.elsevier.com/locate/jcvhb201

    Overview of the CCP4 suite and current developments.

    Get PDF
    The CCP4 (Collaborative Computational Project, Number 4) software suite is a collection of programs and associated data and software libraries which can be used for macromolecular structure determination by X-ray crystallography. The suite is designed to be flexible, allowing users a number of methods of achieving their aims. The programs are from a wide variety of sources but are connected by a common infrastructure provided by standard file formats, data objects and graphical interfaces. Structure solution by macromolecular crystallography is becoming increasingly automated and the CCP4 suite includes several automation pipelines. After giving a brief description of the evolution of CCP4 over the last 30 years, an overview of the current suite is given. While detailed descriptions are given in the accompanying articles, here it is shown how the individual programs contribute to a complete software package
    • …
    corecore