923 research outputs found

    Lecturing skills as predictors of tutoring skills in a problem-based medical curriculum

    Get PDF
    Purpose: Recruitment of tutors to work in problem-based learning (PBL) programs is challenging, especially in that most of them are graduated from discipline-based programs. Therefore, this study aims at examining whether lecturing skills of faculty could predict their PBL tutoring skills. Methods: This study included evaluation of faculty (n=69) who participated in both tutoring and lecturing within particular PBL units at the College of Medicine and Medical Sciences (CMMS), Arabian Gulf University, Bahrain. Each faculty was evaluated by medical students (n=45±8 for lecturing and 8±2 for PBL tutoring) using structured evaluation forms based on a Likert-type scale (poor to excellent). The prediction of tutoring skills using lecturing skills was statistically analyzed using stepwise linear regression. Results: Among the parameters used to judge lecturing skills, the most important predictor for tutoring skills was subject matter mastery in the lecture by explaining difficult concepts and responding effectively to students' questions. Subject matter mastery in the lecture positively predicted five tutoring skills and accounted for 25% of the variance in overall effectiveness of the PBL tutors (F=22.39, P=0.000). Other important predictors for tutoring skills were providing a relaxed class atmosphere and effective use of audiovisual aids in the lecture. Conclusion: Predicting the tutoring skills based on lecturing skills could have implications for recruiting tutors in PBL medical programs and for tutor training initiatives

    Democracy: the forgotten challenge for bioethics in the developing countries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bioethics as a field related to the health system and health service delivery has grown in the second half of the 20<sup>th </sup>century, mainly in North America. This is attributed, the author argues, to mainly three kinds of development that took place in the developed countries at a pace different than the developing countries. They are namely: development of the health system; moral development; and political development.</p> <p>Discussion</p> <p>This article discusses the factors that impede the development of the field of bioethics from an academic activity to a living field that is known and practiced by the people in the developing countries. They are quite many; however, the emphasis here is on role of the political structure in the developing countries and how it negatively affects the development of bioethics. It presents an argument that if bioethics is to grow within the system of health service, it should be accompanied by a parallel changes in the political mindsets in these countries.</p> <p>Summary</p> <p>For bioethics to flourish in developing countries, it needs an atmosphere of freedom where people can practice free moral reasoning and have full potential to take their life decisions by themselves. Moreover, bioethics could be a tool for political change through the empowerment of people, especially the vulnerable.</p> <p>To achieve that, the article is proposing a practical framework for facilitating the development of the field of bioethics in the developing countries.</p

    Advancing Genetic Selection and Behavioral Genomics of Working Dogs Through Collaborative Science

    Get PDF
    The ancient partnership between people and dogs is struggling to meet modern day needs, with demand exceeding our capacity to safely breed high-performing and healthy dogs. New statistical genetic approaches and genomic technology have the potential to revolutionize dog breeding, by transitioning from problematic phenotypic selection to methods that can preserve genetic diversity while increasing the proportion of successful dogs. To fully utilize this technology will require ultra large datasets, with hundreds of thousands of dogs. Today, dog breeders struggle to apply even the tools available now, stymied by the need for sophisticated data storage infrastructure and expertise in statistical genetics. Here, we review recent advances in animal breeding, and how a new approach to dog breeding would address the needs of working dog breeders today while also providing them with a path to realizing the next generation of technology. We provide a step-by-step guide for dog breeders to start implementing estimated breeding value selection in their programs now, and we describe how genotyping and DNA sequencing data, as it becomes more widely available, can be integrated into this approach. Finally, we call for data sharing among dog breeding programs as a path to achieving a future that can benefit all dogs, and their human partners too

    Study of an Optimized Micro-Grid’s Operation with Electrical Vehicle-Based Hybridized Sustainable Algorithm

    Get PDF
    Recently, the expansion of energy communities has been aided by the lowering cost of storage technologies and the appearance of mechanisms for exchanging energy that is driven by economics. An amalgamation of different renewable energy sources, including solar, wind, geothermal, tidal, etc., is necessary to offer sustainable energy for smart cities. Furthermore, considering the induction of large-scale electric vehicles connected to the regional micro-grid, and causes of increase in the randomness and uncertainty of the load in a certain area, a solution that meets the community demands for electricity, heating, cooling, and transportation while using renewable energy is needed. This paper aims to define the impact of large-scale electric vehicles on the operation and management of the microgrid using a hybridized algorithm. First, with the use of the natural attributes of electric vehicles such as flexible loads, a large-scale electric vehicle response dispatch model is constructed. Second, three factors of micro-grid operation, management, and environmental pollution control costs with load fluctuation variance are discussed. Third, a hybrid gravitational search algorithm and random forest regression (GSA-RFR) approach is proposed to confirm the method’s authenticity and reliability. The constructed large-scale electric vehicle response dispatch model significantly improves the load smoothness of the micro-grid after the large-scale electric vehicles are connected and reduces the impact of the entire grid. The proposed hybridized optimization method was solved within 296.7 s, the time taken for electric vehicle users to charge from and discharge to the regional micro-grid, which improves the economy of the micro-grid, and realizes the effective management of the regional load. The weight coefficients λ1 and λ2 were found at 0.589 and 0.421, respectively. This study provides key findings and suggestions that can be useful to scholars and decisionmakers

    A New CuSe-TiO2-GO Ternary Nanocomposite: Realizing a High Capacitance and Voltage for an Advanced Hybrid Supercapacitor

    Get PDF
    A high capacitance and widened voltage frames for an aqueous supercapacitor system are challenging to realize simultaneously in an aqueous medium. The severe water splitting seriously restricts the narrow voltage of the aqueous electrolyte beyond 2 V. To overcome this limitation, herein, we proposed the facile wet-chemical synthesis of a new CuSe-TiO2-GO ternary nanocomposite for hybrid supercapacitors, thus boosting the specific energy up to some maximum extent. The capacitive charge storage mechanism of the CuSe-TiO2-GO ternary nanocomposite electrode was tested in an aqueous solution with 3 M KOH as the electrolyte in a three-cell mode assembly. The voltammogram analysis manifests good reversibility and a remarkable capacitive response at various currents and sweep rates, with a durable rate capability. At the same time, the discharge/charge platforms realize the most significant capacitance and a capacity of 920 F/g (153 mAh/g), supported by the impedance analysis with minimal resistances, ensuring the supply of electrolyte ion diffusion to the active host electrode interface. The built 2 V CuSe-TiO2-GO||AC-GO||KOH hybrid supercapacitor accomplished a significant capacitance of 175 F/g, high specific energy of 36 Wh/kg, superior specific power of 4781 W/kg, and extraordinary stability of 91.3% retention relative to the stable cycling performance. These merits pave a new way to build other ternary nanocomposites to achieve superior performance for energy storage devices

    Patient Frailty: Key Considerations, Definitions and Practical Implications

    Get PDF
    By 2020, the elderly (≥65-year-old) world population is projected to exceed one billion individuals. This demographic megatrend has brought topics such as physiological age and frailty to the forefront of medical research efforts around the globe. The concept of frailty has evolved significantly since the mid-twentieth century. The outdated stereotype of a “thin, stooped, slow octogenarian” has transitioned to a more scientific and objective understanding of the problem. Still, a comprehensive and concise definition of “frailty” remains elusive. Until such a definition is firmly established and universally agreed upon, clinicians continue to rely on the somewhat subjective conceptual framework of today. In this chapter, the authors review key issues pertaining to clinical management of frail patients, including diagnosis/identification, preventive strategies, therapeutic approaches, and common pitfalls. The relationship between frailty, various domains of life, and functional status is also discussed. Finally, we will touch upon the concepts of end-of-life and goals of care, focusing on their relationship to frailty

    Implementation of breast cancer continuum of care in low- and middle-income countries during the COVID-19 pandemic

    Get PDF
    Breast cancer is the most common malignancy among women worldwide. The current COVID-19 pandemic represents an unprecedented challenge leading to care disruption, which is more severe in low- and middle-income countries (LMIC) due to existing economic obstacles. This review presents the global perspective and preparedness plans for breast cancer continuum of care amid the COVID-19 outbreak and discusses challenges faced by LMIC in implementing these strategies. Prioritization and triage of breast cancer patients in a multidisciplinary team setting are of paramount importance. Deescalation of systemic and radiation therapy can be utilized safely in selected clinical scenarios. The presence of a framework and resource-adapted recommendations exploiting available evidence-based data with judicious personalized use of current resources is essential for breast cancer care in LMIC during the COVID-19 pandemic

    The Microstructure and Properties of Ni-Si-La2O3 Coatings Deposited on 304 Stainless Steel by Microwave Cladding

    Get PDF
    In this investigation, microwave radiation was used alongside a combination of Ni powder, Si powder, and La2O3 (Lanthanum oxide) powder to create surface cladding on SS-304 steel. To complete the microwave cladding process, 900 W at 2.45 GHz was used for 120 s. “Response surface methodology (RSM)” was utilized to attain the optimal combination of microwave cladding process parameters. The surface hardness of the cladding samples was taken as a response. The optimal combination of microwave cladding process parameters was found to be Si (wt.%) of 19.28, a skin depth of 4.57 µm, irradiation time of 118 s, and La2O3 (wt.%) of 11 to achieve a surface hardness of 287.25 HV. Experimental surface hardness at the corresponding microwave-cladding-process parameters was found to be 279 HV. The hardness of SS-304 was improved by about 32.85% at the optimum combination of microwave cladding process parameters. The SEM and optical microscopic images showed the presence of Si, Ni, and La2O3 particles. SEM images of the “cladding layer and surface” showed the “uniform cladding layer” with “fewer dark pixels” (yielding higher homogeneity). Higher homogeneity reduced the dimensional deviation in the developed cladding surface. XRD of the cladded surface showed the presence of FeNi, Ni2Si, FeNi3, NiSi2, Ni3C, NiC, and La2O3 phases. The “wear rate and coefficient of friction” of the developed cladded surface with 69.72% Ni, 19.28% Si, and 11% La2O3 particles were found to be 0.00367 mm3/m and 0.312, respectively. “Few dark spots” were observed on the “corroded surface”. These “dark spots” displayed “some corrosion (corrosion weight loss 0.49 mg)” in a “3.5 wt.% NaCl environment”. © 2023 by the authors
    corecore