5,236 research outputs found

    Dynamical transitions and sliding friction of the phase-field-crystal model with pinning

    Get PDF
    We study the nonlinear driven response and sliding friction behavior of the phase-field-crystal (PFC) model with pinning including both thermal fluctuations and inertial effects. The model provides a continuous description of adsorbed layers on a substrate under the action of an external driving force at finite temperatures, allowing for both elastic and plastic deformations. We derive general stochastic dynamical equations for the particle and momentum densities including both thermal fluctuations and inertial effects. The resulting coupled equations for the PFC model are studied numerically. At sufficiently low temperatures we find that the velocity response of an initially pinned commensurate layer shows hysteresis with dynamical melting and freezing transitions for increasing and decreasing applied forces at different critical values. The main features of the nonlinear response in the PFC model are similar to the results obtained previously with molecular dynamics simulations of particle models for adsorbed layers.Comment: 7 pages, 8 figures, to appear in Physcial Review

    Ordering kinetics of stripe patterns

    Full text link
    We study domain coarsening of two dimensional stripe patterns by numerically solving the Swift-Hohenberg model of Rayleigh-Benard convection. Near the bifurcation threshold, the evolution of disordered configurations is dominated by grain boundary motion through a background of largely immobile curved stripes. A numerical study of the distribution of local stripe curvatures, of the structure factor of the order parameter, and a finite size scaling analysis of the grain boundary perimeter, suggest that the linear scale of the structure grows as a power law of time with a craracteristic exponent z=3. We interpret theoretically the exponent z=3 from the law of grain boundary motion.Comment: 4 pages, 4 figure

    DDFT calibration and investigation of an anisotropic phase-field crystal model

    Full text link
    The anisotropic phase-field crystal model recently proposed and used by Prieler et al. [J. Phys.: Condens. Matter 21, 464110 (2009)] is derived from microscopic density functional theory for anisotropic particles with fixed orientation. Further its morphology diagram is explored. In particular we investigated the influence of anisotropy and undercooling on the process of nucleation and microstructure formation from atomic to the microscale. To that end numerical simulations were performed varying those dimensionless parameters which represent anisotropy and undercooling in our anisotropic phase-field crystal (APFC) model. The results from these numerical simulations are summarized in terms of a morphology diagram of the stable state phase. These stable phases are also investigated with respect to their kinetics and characteristic morphological features.Comment: It contain 13 pages and total of 7 figure

    Grain boundary motion in layered phases

    Full text link
    We study the motion of a grain boundary that separates two sets of mutually perpendicular rolls in Rayleigh-B\'enard convection above onset. The problem is treated either analytically from the corresponding amplitude equations, or numerically by solving the Swift-Hohenberg equation. We find that if the rolls are curved by a slow transversal modulation, a net translation of the boundary follows. We show analytically that although this motion is a nonlinear effect, it occurs in a time scale much shorter than that of the linear relaxation of the curved rolls. The total distance traveled by the boundary scales as ϵ1/2\epsilon^{-1/2}, where ϵ\epsilon is the reduced Rayleigh number. We obtain analytical expressions for the relaxation rate of the modulation and for the time dependent traveling velocity of the boundary, and especially their dependence on wavenumber. The results agree well with direct numerical solutions of the Swift-Hohenberg equation. We finally discuss the implications of our results on the coarsening rate of an ensemble of differently oriented domains in which grain boundary motion through curved rolls is the dominant coarsening mechanism.Comment: 16 pages, 5 figure

    The Extravehicular Maneuvering Unit's New Long Life Battery and Lithium Ion Battery Charger

    Get PDF
    The Long Life (Lithium Ion) Battery is designed to replace the current Extravehicular Mobility Unit Silver/Zinc Increased Capacity Battery, which is used to provide power to the Primary Life Support Subsystem during Extravehicular Activities. The Charger is designed to charge, discharge, and condition the battery either in a charger-strapped configuration or in a suit-mounted configuration. This paper will provide an overview of the capabilities and systems engineering development approach for both the battery and the charge

    Phase Diagram and Commensurate-Incommensurate Transitions in the Phase Field Crystal Model with an External Pinning Potential

    Get PDF
    We study the phase diagram and the commensurate-incommensurate transitions in a phase field model of a two-dimensional crystal lattice in the presence of an external pinning potential. The model allows for both elastic and plastic deformations and provides a continuum description of lattice systems, such as for adsorbed atomic layers or two-dimensional vortex lattices. Analytically, a mode expansion analysis is used to determine the ground states and the commensurate-incommensurate transitions in the model as a function of the strength of the pinning potential and the lattice mismatch parameter. Numerical minimization of the corresponding free energy shows good agreement with the analytical predictions and provides details on the topological defects in the transition region. We find that for small mismatch the transition is of first-order, and it remains so for the largest values of mismatch studied here. Our results are consistent with results of simulations for atomistic models of adsorbed overlayers

    Glassy phases and driven response of the phase-field-crystal model with random pinning

    Get PDF
    We study the structural correlations and the nonlinear response to a driving force of a two-dimensional phase-field-crystal model with random pinning. The model provides an effective continuous description of lattice systems in the presence of disordered external pinning centers, allowing for both elastic and plastic deformations. We find that the phase-field crystal with disorder assumes an amorphous glassy ground state, with only short-ranged positional and orientational correlations even in the limit of weak disorder. Under increasing driving force, the pinned amorphous-glass phase evolves into a moving plastic-flow phase and then finally a moving smectic phase. The transverse response of the moving smectic phase shows a vanishing transverse critical force for increasing system sizes

    On the Wilf-Stanley limit of 4231-avoiding permutations and a conjecture of Arratia

    Get PDF
    We construct a sequence of finite automata that accept subclasses of the class of 4231-avoiding permutations. We thereby show that the Wilf-Stanley limit for the class of 4231-avoiding permutations is bounded below by 9.35. This bound shows that this class has the largest such limit among all classes of permutations avoiding a single permutation of length 4 and refutes the conjecture that the Wilf-Stanley limit of a class of permutations avoiding a single permutation of length k cannot exceed (k-1)^2.Comment: Submitted to Advances in Applied Mathematic

    Interviewing suspects: examining the association between skills, questioning, evidence disclosure, and interview outcomes

    Get PDF
    The interviewing of suspects is an important element in the investigation of crime. However, studies concerning actual performance of investigators when undertaking such interviews remain sparse. Nevertheless, in England and Wales, since the introduction of a prescribed framework over 20 years ago, field studies have generally shown an improvement in interviewing performance, notwithstanding ongoing concerns largely relating to the more demanding aspects (such as building/maintaining rapport, intermittent summarising and the logical development of topics). Using a sample of 70 real-life interviews, the present study examined questioning and various evidence disclosure strategies (which have also been found demanding), examining their relationships between interview skills and interview outcomes. It was found that when evidence was disclosed gradually (but revealed later), interviews were generally both more skilled and involved the gaining of comprehensive accounts, whereas when evidence was disclosed either early or very late, interviews were found to be both less skilled and less likely to involve this outcome. These findings contribute towards an increased research base for the prescribed framework

    Noise and dynamical pattern selection

    Full text link
    In pattern forming systems such as Rayleigh-Benard convection or directional solidification, a large number of linearly stable, patterned steady states exist when the basic, simple steady state is unstable. Which of these steady states will be realized in a given experiment appears to depend on unobservable details of the system's initial conditions. We show, however, that weak, Gaussian white noise drives such a system toward a preferred wave number which depends only on the system parameters and is independent of initial conditions. We give a prescription for calculating this wave number, analytically near the onset of instability and numerically otherwise.Comment: 12 pages, REVTEX, no figures. Submitted to Phys. Rev. Let
    corecore