3,590 research outputs found

    Comment on: `Pipe Network Model for Scaling of Dynamic Interfaces in Porous Media'

    Get PDF
    We argue that a proposed exponent identity [Phys. Rev. Lett 85, 1238 (2000)] for interface roughening in spontaneous imbibition is wrong. It rests on the assumption that the fluctuations are controlled by a single time scale, but liquid conservation imposes two distinct time scales.Comment: 1 page, to appear in Phys. Rev. Let

    Dynamical transitions and sliding friction of the phase-field-crystal model with pinning

    Get PDF
    We study the nonlinear driven response and sliding friction behavior of the phase-field-crystal (PFC) model with pinning including both thermal fluctuations and inertial effects. The model provides a continuous description of adsorbed layers on a substrate under the action of an external driving force at finite temperatures, allowing for both elastic and plastic deformations. We derive general stochastic dynamical equations for the particle and momentum densities including both thermal fluctuations and inertial effects. The resulting coupled equations for the PFC model are studied numerically. At sufficiently low temperatures we find that the velocity response of an initially pinned commensurate layer shows hysteresis with dynamical melting and freezing transitions for increasing and decreasing applied forces at different critical values. The main features of the nonlinear response in the PFC model are similar to the results obtained previously with molecular dynamics simulations of particle models for adsorbed layers.Comment: 7 pages, 8 figures, to appear in Physcial Review

    Moir\'e patterns and inversion boundaries in graphene/hexagonal boron nitride bilayers

    Full text link
    In this paper a systematic examination of graphene/hexagonal boron nitride (g/hBN) bilayers is presented, through a recently developed two-dimensional phase field crystal model that incorporates out-of-plane deformations. The system parameters are determined by closely matching the stacking energies and heights of graphene/hBN bilayers to those obtained from existing quantum-mechanical density functional theory calculations. Out-of-plane deformations are shown to reduce the energies of inversion domain boundaries in hBN, and the coupling between graphene and hBN layers leads to a bilayer defect configuration consisting of an inversion boundary in hBN and a domain wall in graphene. Simulations of twisted bilayers reveal the structure, energy, and elastic properties of the corresponding Moir\'e patterns, and show a crossover, as the misorientation angle between the layers increases, from a well-defined hexagonal network of domain boundaries and junctions to smeared-out patterns. The transition occurs when the thickness of domain walls approaches the size of the Moir\'e patterns, and coincides with the peaks in the average von Mises and volumetric stresses of the bilayer.Comment: 11 pages, 16 figure

    Phase Diagram and Commensurate-Incommensurate Transitions in the Phase Field Crystal Model with an External Pinning Potential

    Get PDF
    We study the phase diagram and the commensurate-incommensurate transitions in a phase field model of a two-dimensional crystal lattice in the presence of an external pinning potential. The model allows for both elastic and plastic deformations and provides a continuum description of lattice systems, such as for adsorbed atomic layers or two-dimensional vortex lattices. Analytically, a mode expansion analysis is used to determine the ground states and the commensurate-incommensurate transitions in the model as a function of the strength of the pinning potential and the lattice mismatch parameter. Numerical minimization of the corresponding free energy shows good agreement with the analytical predictions and provides details on the topological defects in the transition region. We find that for small mismatch the transition is of first-order, and it remains so for the largest values of mismatch studied here. Our results are consistent with results of simulations for atomistic models of adsorbed overlayers

    Phase field crystal study of symmetric tilt grain boundaries of iron

    Get PDF
    We apply the phase field crystal model to study the structure and energy of symmetric tilt grain boundaries of bcc iron in 3D. The parameters for the model are obtained by using a recently developed eight-order fitting scheme [A. Jaatinen et al., (2009)]. The grain boundary free energies we obtain from the model are in good agreement with previous results from molecular dynamics simulations and experiments

    Two Approaches to Dislocation Nucleation in the Supported Heteroepitaxial Equilibrium Islanding Phenomenon

    Full text link
    We study the dislocation formation in 2D nanoscopic islands with two methods, the Molecular Static method and the Phase Field Crystal method. It is found that both methods indicate the same qualitative stages of the nucleation process. The dislocations nucleate at the film-substrate contact point and the energy decreases monotonously when the dislocations are farther away from the island-wetting film contact points than the distance of the highest energy barrier.Comment: 4 page

    Ordering kinetics of stripe patterns

    Full text link
    We study domain coarsening of two dimensional stripe patterns by numerically solving the Swift-Hohenberg model of Rayleigh-Benard convection. Near the bifurcation threshold, the evolution of disordered configurations is dominated by grain boundary motion through a background of largely immobile curved stripes. A numerical study of the distribution of local stripe curvatures, of the structure factor of the order parameter, and a finite size scaling analysis of the grain boundary perimeter, suggest that the linear scale of the structure grows as a power law of time with a craracteristic exponent z=3. We interpret theoretically the exponent z=3 from the law of grain boundary motion.Comment: 4 pages, 4 figure

    Glassy phases and driven response of the phase-field-crystal model with random pinning

    Get PDF
    We study the structural correlations and the nonlinear response to a driving force of a two-dimensional phase-field-crystal model with random pinning. The model provides an effective continuous description of lattice systems in the presence of disordered external pinning centers, allowing for both elastic and plastic deformations. We find that the phase-field crystal with disorder assumes an amorphous glassy ground state, with only short-ranged positional and orientational correlations even in the limit of weak disorder. Under increasing driving force, the pinned amorphous-glass phase evolves into a moving plastic-flow phase and then finally a moving smectic phase. The transverse response of the moving smectic phase shows a vanishing transverse critical force for increasing system sizes

    Investigating possible ethnicity and sex bias in clinical examiners: an analysis of data from the MRCP(UK) PACES and nPACES examinations

    Get PDF
    Bias of clinical examiners against some types of candidate, based on characteristics such as sex or ethnicity, would represent a threat to the validity of an examination, since sex or ethnicity are 'construct-irrelevant' characteristics. In this paper we report a novel method for assessing sex and ethnic bias in over 2000 examiners who had taken part in the PACES and nPACES (new PACES) examinations of the MRCP(UK)
    corecore