32 research outputs found

    Approximating the Permanent of a Random Matrix with Vanishing Mean

    Full text link
    We show an algorithm for computing the permanent of a random matrix with vanishing mean in quasi-polynomial time. Among special cases are the Gaussian, and biased-Bernoulli random matrices with mean 1/lnln(n)^{1/8}. In addition, we can compute the permanent of a random matrix with mean 1/poly(ln(n)) in time 2^{O(n^{\eps})} for any small constant \eps>0. Our algorithm counters the intuition that the permanent is hard because of the "sign problem" - namely the interference between entries of a matrix with different signs. A major open question then remains whether one can provide an efficient algorithm for random matrices of mean 1/poly(n), whose conjectured #P-hardness is one of the baseline assumptions of the BosonSampling paradigm

    Quantum Locally Testable Codes

    Full text link
    We initiate the study of quantum Locally Testable Codes (qLTCs). We provide a definition together with a simplification, denoted sLTCs, for the special case of stabilizer codes, together with some basic results using those definitions. The most crucial parameter of such codes is their soundness, R(δ)R(\delta), namely, the probability that a randomly chosen constraint is violated as a function of the distance of a word from the code (δ\delta, the relative distance from the code, is called the proximity). We then proceed to study limitations on qLTCs. In our first main result we prove a surprising, inherently quantum, property of sLTCs: for small values of proximity, the better the small-set expansion of the interaction graph of the constraints, the less sound the qLTC becomes. This phenomenon, which can be attributed to monogamy of entanglement, stands in sharp contrast to the classical setting. The complementary, more intuitive, result also holds: an upper bound on the soundness when the code is defined on poor small-set expanders (a bound which turns out to be far more difficult to show in the quantum case). Together we arrive at a quantum upper-bound on the soundness of stabilizer qLTCs set on any graph, which does not hold in the classical case. Many open questions are raised regarding what possible parameters are achievable for qLTCs. In the appendix we also define a quantum analogue of PCPs of proximity (PCPPs) and point out that the result of Ben-Sasson et. al. by which PCPPs imply LTCs with related parameters, carries over to the sLTCs. This creates a first link between qLTCs and quantum PCPs.Comment: Some of the results presented here appeared in an initial form in our quant-ph submission arXiv:1301.3407. This is a much extended and improved version. 30 pages, no figure

    A Quasi-Random Approach to Matrix Spectral Analysis

    Get PDF
    Inspired by the quantum computing algorithms for Linear Algebra problems [HHL,TaShma] we study how the simulation on a classical computer of this type of "Phase Estimation algorithms" performs when we apply it to solve the Eigen-Problem of Hermitian matrices. The result is a completely new, efficient and stable, parallel algorithm to compute an approximate spectral decomposition of any Hermitian matrix. The algorithm can be implemented by Boolean circuits in O(log2n)O(\log^2 n) parallel time with a total cost of O(nω+1)O(n^{\omega+1}) Boolean operations. This Boolean complexity matches the best known rigorous O(log2n)O(\log^2 n) parallel time algorithms, but unlike those algorithms our algorithm is (logarithmically) stable, so further improvements may lead to practical implementations. All previous efficient and rigorous approaches to solve the Eigen-Problem use randomization to avoid bad condition as we do too. Our algorithm makes further use of randomization in a completely new way, taking random powers of a unitary matrix to randomize the phases of its eigenvalues. Proving that a tiny Gaussian perturbation and a random polynomial power are sufficient to ensure almost pairwise independence of the phases (mod(2π))(\mod (2\pi)) is the main technical contribution of this work. This randomization enables us, given a Hermitian matrix with well separated eigenvalues, to sample a random eigenvalue and produce an approximate eigenvector in O(log2n)O(\log^2 n) parallel time and O(nω)O(n^\omega) Boolean complexity. We conjecture that further improvements of our method can provide a stable solution to the full approximate spectral decomposition problem with complexity similar to the complexity (up to a logarithmic factor) of sampling a single eigenvector.Comment: Replacing previous version: parallel algorithm runs in total complexity nω+1n^{\omega+1} and not nωn^{\omega}. However, the depth of the implementing circuit is log2(n)\log^2(n): hence comparable to fastest eigen-decomposition algorithms know
    corecore