31 research outputs found
Вплив різних факторів на соматотипологічні ознаки
To determine which species of Culicoides biting midges carry Schmallenberg virus (SBV), we assayed midges collected in the Netherlands during autumn 2011. SBV RNA was found in C. scoticus, C. obsoletus sensu stricto, and C. chiopterus. The high proportion of infected midges might explain the rapid spread of SBV throughout Europe
Vector-borne disease surveillance in livestock populations: A critical review of literature recommendations and implemented surveillance (BTV-8) in five European countries
Preparedness against vector-borne threats depends on the existence of a long-term, sustainable surveillance of vector-borne disease and their relevant vectors. This work reviewed the availability of such surveillance systems in five European countries (Denmark, France, The Netherlands, Sweden and United Kingdom, part of the CoVetLab network). A qualitative assessment was then performed focusing on surveillance directed particularly to BTV-8. Information regarding surveillance activities were reviewed for the years 2008 and 2012. The results were then complemented with a critical scoping review of the literature aimed at identifying disease surveillance strategies and methods that are currently suggested as best suited to target vector-borne diseases in order to guide future development of surveillance in the countries in question. Passive surveillance was found to be efficient for early detection of diseases during the early phase of introduction into a free country. However, its value diminished once the disease has been established in a territory. Detection of emerging diseases was found to be very context and area specific, and thus active surveillance designs need to take the available epidemiological, ecological and entomological information into account. This was demonstrated by the effectiveness of the bulk milk surveillance in detecting the first case in Sweden, highlighting the need for output based standards to allow the most effective, context dependent, surveillance strategies to be used. Preparedness was of fundamental importance in determining the timeliness of detection and control in each country and that this in turn was heavily influenced by knowledge of emerging diseases in neighboring countries. Therefore it is crucial to share information on outbreaks between researchers and decision-makers and across borders continuously in order to react timely in case of an outbreak. Furthermore, timely reaction to an outbreak was heavily influenced by availability of control measures (vaccines), which is also strengthened if knowledge is shared quickly between countries. The assessment of the bluetongue surveillance in the affected countries showed that the degree of voluntary engagement varied, and that it is important to engage the publicby general awareness and dissemination of results. The degree of engagement will also aid in establishing a passive surveillance system
Farmers' Preferences For Bluetongue Vaccination Scheme Attributes : An Integrated Choice and Latent Variable Approach
Re-emergence of the bluetongue disease in Europe poses a continuous threat to European livestock production. Large-scale vaccination is the most effective intervention to control virus spread. Compared to command-and-control approaches, voluntary vaccination approaches can be effective at lower costs, provided that farmers are willing to participate. We use a discrete choice experiment to estimate the preferences for vaccination scheme attributes, accounting for preference heterogeneity via an integrated choice and latent variable approach. In designing livestock disease control schemes, it is often argued that governments should use financial, incentive-based policy instruments to compensate farmers for externalities, assuming they act in rational self-interest. Our results suggest that in addition to economic motives, farmers can have intrinsic or social motives to invest in livestock disease control. Implications for the effectiveness of providing subsidy or information to motivate voluntary participation are discussed
Highly pathogenic avian influenza subtype H5Nx clade 2.3.4.4 outbreaks in Dutch poultry farms, 2014–2018 : Clinical signs and mortality
In recent years, different subtypes of highly pathogenic avian influenza (HPAI) viruses caused outbreaks in several poultry types worldwide. Early detection of HPAI virus infection is crucial to reduce virus spread. Previously, the use of a mortality ratio threshold to expedite notification of suspicion in layer farms was proposed. The purpose of this study was to describe the clinical signs reported in the early stages of HPAI H5N8 and H5N6 outbreaks on chicken and Pekin duck farms between 2014 and 2018 in the Netherlands and compare them with the onset of an increased mortality ratio (MR). Data on daily mortality and clinical signs from nine egg-producing chicken farms and seven Pekin duck farms infected with HPAI H5N8 (2014 and 2016) and H5N6 (2017–2018) in the Netherlands were analysed. In 12 out of 15 outbreaks for which a MR was available, MR increase preceded or coincided with the first observation of clinical signs by the farmer. In one chicken and two Pekin duck outbreaks, clinical signs were observed prior to MR increase. On all farms, veterinarians observed clinical signs of general disease. Nervous or locomotor signs were reported in all Pekin duck outbreaks, but only in two chicken outbreaks. Other clinical signs were observed less frequently in both chickens and Pekin ducks. Compared to veterinarians, farmers observed and reported clinical signs, especially respiratory and gastrointestinal signs, less frequently. This case series suggests that a MR with a set threshold could be an objective parameter to detect HPAI infection on chicken and Pekin duck farms at an early stage. Observation of clinical signs may provide additional indication for farmers and veterinarians for notifying a clinical suspicion of HPAI infection. Further assessment and validation of a MR threshold in Pekin ducks are important as it could serve as an important tool in HPAI surveillance programs.</p
Effect of 2020–21 and 2021–22 Highly Pathogenic Avian Influenza H5 Epidemics on Wild Birds, the Netherlands
The number of highly pathogenic avian influenza (HPAI) H5-related infections and deaths of wild birds in Europe was high during October 1, 2020–September 30, 2022. To quantify deaths among wild species groups with known susceptibility for HPAI H5 during those epidemics, we collected and recorded mortality data of wild birds in the Netherlands. HPAI virus infection was reported in 51 bird species. The species with the highest numbers of reported dead and infected birds varied per epidemic year; in 2020–21, they were within the Anatidae family, in particular barnacle geese (Branta leucopsis) and in 2021–22, they were within the sea bird group, particularly Sandwich terns (Thalasseus sandvicensis) and northern gannet (Morus bassanus). Because of the difficulty of anticipating and modeling the future trends of HPAI among wild birds, we recommend monitoring live and dead wild birds as a tool for surveillance of the changing dynamics of HPAI.</p
Effect of 2020–21 and 2021–22 Highly Pathogenic Avian Influenza H5 Epidemics on Wild Birds, the Netherlands
The number of highly pathogenic avian influenza (HPAI) H5-related infections and deaths of wild birds in Europe was high during October 1, 2020–September 30, 2022. To quantify deaths among wild species groups with known susceptibility for HPAI H5 during those epidemics, we collected and recorded mortality data of wild birds in the Netherlands. HPAI virus infection was reported in 51 bird species. The species with the highest numbers of reported dead and infected birds varied per epidemic year; in 2020–21, they were within the Anatidae family, in particular barnacle geese (Branta leucopsis) and in 2021–22, they were within the sea bird group, particularly Sandwich terns (Thalasseus sandvicensis) and northern gannet (Morus bassanus). Because of the difficulty of anticipating and modeling the future trends of HPAI among wild birds, we recommend monitoring live and dead wild birds as a tool for surveillance of the changing dynamics of HPAI.</p
Vogelgrieprisico’s nabij de Vecht bij Gramsbergen
De Nederlandse wateren en moerassen trekken grote aantallen watervogels aan. Voor pluimvee- houders gaat de aanwezigheid van watervogels in toenemende mate gepaard met zorgen. Die komen voort uit het gegeven dat een relatief groot deel van de besmettingen met het vogelgriepvirus op com- merciële pluimveebedrijven zich in de afgelopen jaren heeft voorgedaan in gebieden met relatief veel watervogels. Nu er, in het kader van het project Vechtrijk Gramsbergen fase 1, plannen bestaan voor de aanleg van onder meer een nevengeul langs de Vecht bij Gramsbergen, dient de vraag zich aan wat dit betekent voor het risico op insleep van dit virus op pluimveebedrijven in de omgeving
Quantification of visits of wild fauna to a commercial free-range layer farm in the Netherlands located in an avian influenza hot-spot area assessed by video-camera monitoring
Free-range poultry farms have a high risk of introduction of avian influenza viruses (AIV), and it is presumed that wild (water) birds are the source of introduction. There is very scarce quantitative data on wild fauna visiting free-range poultry farms. We quantified visits of wild fauna to a free-range area of a layer farm, situated in an AIV hot-spot area, assessed by video-camera monitoring. A total of 5,016 hr (209 days) of video recordings, covering all 12 months of a year, were analysed. A total of 16 families of wild birds and five families of mammals visited the free-range area of the layer farm. Wild birds, except for the dabbling ducks, visited the free-range area almost exclusively in the period between sunrise and the moment the chickens entered the free-range area. Known carriers of AIV visited the outdoor facility regularly: species of gulls almost daily in the period January–August; dabbling ducks only in the night in the period November–May, with a distinct peak in the period December–February. Only a small fraction of visits of wild fauna had overlap with the presence of chickens at the same time in the free-range area. No direct contact between chickens and wild birds was observed. It is hypothesized that AIV transmission to poultry on free-range poultry farms will predominantly take place via indirect contact: taking up AIV by chickens via wild-bird-faeces-contaminated water or soil in the free-range area. The free-range poultry farmer has several possibilities to potentially lower the attractiveness of the free-range area for wild (bird) fauna: daily inspection of the free-range area and removal of carcasses and eggs; prevention of forming of water pools in the free-range facility. Furthermore, there are ways to scare-off wild birds, for example use of laser equipment or trained dogs.</p