445 research outputs found

    Initial stages of tundra shrub litter decomposition may be accelerated by deeper winter snow but slowed down by spring warming

    Get PDF
    The Arctic climate is projected to change during the coming century, with expected higher air temperatures and increased winter snowfall. These climatic changes might alter litter decomposition rates, which in turn could affect carbon (C) and nitrogen (N) cycling rates in tundra ecosystems. However, little is known of seasonal climate change effects on plant litter decomposition rates and N dynamics, hampering predictions of future arctic vegetation composition and the tundra C balance. We tested the effects of snow addition (snow fences), warming (open top chambers), and shrub removal (clipping), using a full-factorial experiment, on mass loss and N dynamics of two shrub tissue types with contrasting quality: deciduous shrub leaf litter (Salix glauca) and evergreen shrub shoots (Cassiope tetragona). We performed a 10.5-month decomposition experiment in a low-arctic shrub tundra heath in West-Greenland. Field incubations started in late fall, with harvests made after 249, 273, and 319 days of field incubation during early spring, summer and fall of the next year, respectively. We observed a positive effect of deeper snow on winter mass loss which is considered a result of observed higher soil winter temperatures and corresponding increased winter microbial litter decomposition in deep-snow plots. In contrast, warming reduced litter mass loss during spring, possibly because the dry spring conditions might have dried out the litter layer and thereby limited microbial litter decomposition. Shrub removal had a small positive effect on litter mass loss for C. tetragona during summer, but not for S. glauca. Nitrogen dynamics in decomposing leaves and shoots were not affected by the treatments but did show differences in temporal patterns between tissue types: there was a net immobilization of N by C. tetragona shoots after the winter incubation, while S. glauca leaf N-pools were unaltered over time. Our results support the widely hypothesized positive linkage between winter snow depth and litter decomposition rates in tundra ecosystems, but our results do not reveal changes in N dynamics during initial decomposition stages. Our study also shows contrasting impacts of spring warming and snow addition on shrub decomposition rates that might have important consequences for plant community composition and vegetation-climate feedbacks in rapidly changing tundra ecosystems

    Glacial Rock Flour as Soil Amendment in Subarctic Farming in South Greenland

    Get PDF
    Agriculture in subarctic regions is limited by a short and cold growing season. With warming in the region, the number of growing days and, consequently, the potential for agricultural intensification and expansion may increase. However, subarctic soils are typically acidic, low in plant-available nutrients, and coarsely textured, so they require soil amendment prior to intensification. This is the case in South Greenland, where we tested the use of glacial rock flour (GRF) produced by glaciers as a soil amendment. An experiment was made on a farm in South Greenland during the 2019 summer to quantify the short-term effect of applying GRF to a field dominated by perennial timothy grass. Three treatments were compared to control sites (n = 5): 20 t GRF ha−1 without conventional NPK-fertilizer, as well as 20 and 40 t GRF ha−1 in combination with 25% NPK-fertilizer. The experiment showed no significant response in biomass production (aboveground and belowground) for the plots treated with GRF only. The low rate of GRF combined with 25% NKP showed a marked and significant increase in yield in contrast to a high GRF rate with NPK, which resulted in a significant reduction in yields. The chemical composition of the plants versus soil and GRF showed that the plant uptake of nutrients was significantly higher for NPK-fertilized plots, as expected, but no differences were found between GRF-treated plots and the control plots with respect to nutrient availability or pH in the soil. We conclude that adding water and fertilizer has the potential to increase yields in South Greenland, but applying glacial rock flour as a short-term agricultural supplement needs to be further investigated before it can be recommended
    corecore