7 research outputs found

    Inactivation Mechanisms of Human and Animal Rotaviruses by Solar UVA and Visible Light

    No full text
    Two rotavirus (RV) strains (sialidase-resistant Wa and sialidase-sensitive OSU) were irradiated with simulated solar UVA and visible light in sensitizer-free phosphate buffered solution (PBS) (lacking exogenous reactive oxygen species (ROS)) or secondary effluent wastewater (producing ROS). Although light attenuated for up to 15% through the secondary effluent wastewater (SEW), the inactivation efficacies increased by 0.7 log<sub>10</sub> for Wa and 2 log<sub>10</sub> for OSU compared to those in sensitizer-free phosphate buffered solution (PBS) after 4 h of irradiation. A binding assay using magnetic beads coated with porcine gastric mucin containing receptors for rotaviruses (PGM-MB) was developed to determine if inactivation influenced RV binding to its receptors. The linear correlation between the reduction in infectivity and the reduction in binding after irradiation in sensitizer-free solution suggests that the main mechanism of RV inactivation in the absence of exogenous ROS was due to damage to VP8*, the RV protein that binds to host cell receptors. For a given reduction in infectivity, greater damage in VP8* was observed with sialidase-resistant Wa compared to sialidase-sensitive OSU. The lack of correlation between the reduction in infectivity and the reduction in binding, in SEW, led us to include RNase treatment before the binding step to quantify virions with intact protein capsids and exclude virions that can bind to the receptors but have their capsid permeable after irradiation. This assay showed a linear correlation between the reduction in RV infectivity and RV–receptor interactions, suggesting that RV inactivation in SEW was due to compromised capsid proteins other than the VP8* protein. Thus, rotavirus inactivation by UVA and visible light irradiation depends on both the formation of ROS and the stability of viral proteins

    Low-Cost UVBot Using SLAM to Mitigate the Spread of Noroviruses in Occupational Spaces

    No full text
    Noroviruses (NoVs) cause over 90% of non-bacterial gastroenteritis outbreaks in adults and children in developed countries. Therefore, there is a need for approaches to mitigate the transmission of noroviruses in workplaces to reduce their substantial health burden. We developed and validated a low-cost, autonomous robot called the UVBot to disinfect occupational spaces using ultraviolet (UV) lamps. The total cost of the UVBOT is less than USD 1000, which is much lower than existing commercial robots that cost as much as USD 35,000. The user-friendly desktop application allows users to control the robot remotely, check the disinfection map, and add virtual walls to the map. A 2D LiDAR and a simultaneous localization and mapping (SLAM) algorithm was used to generate a map of the space being disinfected. Tulane virus (TV), a human norovirus surrogate, was used to validate the UVBot’s effectiveness. TV was deposited on a painted drywall and exposed to UV radiation at different doses. A 3-log (99.9%) reduction of TV infectivity was achieved at a UV dose of 45 mJ/cm2. We further calculated the sanitizing speed as 3.5 cm/s and the efficient sanitizing distance reached up to 40 cm from the UV bulb. The design, software, and environment test data are available to the public so that any organization with minimal engineering capabilities can reproduce the UVBot system

    Dry Heat as a Decontamination Method for N95 Respirator Reuse

    No full text
    A pandemic such as COVID-19 can cause a sudden depletion in the worldwide supply of respirators, forcing healthcare providers to reuse them. In this study, we systematically evaluated dry heat treatment as a viable option for the safe decontamination of N95 respirators (1860, 3M) before its reuse. We found that the dry heat generated by an electric cooker (100°C, 5% relative humidity, 50 min) effectively inactivated Tulane virus (>5.2-log10 reduction), rotavirus (>6.6-log10 reduction), adenovirus (>4.0-log10 reduction), and transmissible gastroenteritis virus (>4.7-log10 reduction). The respirator integrity (determined based on the particle filtration efficiency and quantitative fit testing) was not compromised after 20 cycles of 50-min dry heat treatment. Based on these results, we propose dry heat decontamination generated by an electric cooker (e.g., rice cookers, instant pots, ovens) to be an effective and accessible decontamination method for the safe reuse of N95 respirators. </div

    Reverse Transcription Loop-Mediated Isothermal Amplification Assay for Ultrasensitive Detection of SARS-CoV2 in Saliva and Viral Transport Medium Clinical Samples

    No full text
    The COVID-19 pandemic has underscored the shortcomings in the deployment of state-of-the-art diagnostics platforms. Although several polymerase chain reaction (PCR)-based techniques have been rapidly developed to meet the growing testing needs, such techniques often need samples collected through a swab, the use of RNA extraction kits, and expensive thermocyclers in order to successfully perform the test. Isothermal amplification-based approaches have also been recently demonstrated for rapid severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection by minimizing sample preparation while also reducing the instrumentation and reaction complexity. In addition, there are limited reports of saliva as the sample source, and some of these indicate inferior sensitivity when comparing reverse transcription loop-mediated isothermal amplification (RT-LAMP) with PCR-based techniques. In this paper, we demonstrate an improved sensitivity assay from saliva using a two-step RT-LAMP assay, where a short 10 min RT step is performed with only B3 and backward inner primers before the final reaction. We show that while the one-step RT-LAMP demonstrates satisfactory results, the optimized two-step approach allows detection of only few molecules per reaction and performs significantly better than the one-step RT-LAMP and conventional two-step RT-LAMP approaches with all primers included in the RT step. We show control measurements with RT-PCR, and importantly, we demonstrate RNA extraction-free RT-LAMP-based assays for detection of SARS-CoV-2 from viral transport media and saliva clinical samples
    corecore