11 research outputs found

    Application of a Novel Synergetic Control for Optimal Power Extraction of a Small-Scale Wind Generation System with Variable Loads and Wind Speeds

    Get PDF
    © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).The synergetic control technique (SCT) has the solution for understanding the symmetry inherent in the non-linear properties of wind turbines (WTs); therefore, they achieve excellent performance and enhance the operation of the WT. Small-scale WTs are efficient and cost-effective; they are usually installed close to where the generated electricity is used. This technology is gaining popularity worldwide for off-grid electricity generation, such as in rural homes, farms, small factories, and commercial properties. To enhance the efficiency of the WT, it is vital to operate the WT at its maximum power. This work proposes an efficient and fast maximum power point tracking (MPPT) technique based on the SCT to eradicate the drawbacks of the conventional methods and enhance the operation of the WT at the MPP regardless of wind speed and load changes. The SCT has advantages, such as robustness, simplified design, fast response, no requirement for knowledge of WT characteristics, no need for wind sensors or intricate power electronics, and straightforward implementation. Furthermore, it improves speed convergence with minimal steady-state oscillations at the MPP. The investigated configuration involves a wind-driven permanent magnet synchronous generator (PMSG), uncontrolled rectifier, boost converter, and variable load. The two converters are used to integrate the PMSG with the load. Three scenarios (step changes in wind speed, stochastic changes in wind speed, and variable electrical load) are studied to assess the SCT. The results prove a high performance of the suggested MPPT control method for a fast convergence speed, boosted WT efficacy, low oscillation levels, and applicability under a variety of environmental situations. This work used the MATLAB/Simulink program and was then implemented on a dSPACE 1104 control board to assess the efficacy of the SCT. Furthermore, experimental validation on a 1 kW Darrieus-type WT driving a PMSG was performed.Peer reviewe

    Unified Power Quality Conditioner Using Recent Optimization Technique: A Case Study in Cairo Airport, Egypt

    No full text
    This article offers a power quality (PQ) strategy to reduce light intensity flickers, voltage enhancements, and harmonics mitigation of the grid current in extensive networks of LED lighting at Cairo airport, Egypt. A transformerless unified power quality conditioner (TL-UPQC) with its controls is presented to address the majority of PQ issues in a network. The TL-UPQC comprises a dynamic voltage restorer (DVR) as a series compensator, which quickly maintains the load voltage when there is a voltage decrease, surge, or flickering in the network and an active power filter (APF) acts as a shunt compensator that reduces harmonic currents and injects reactive currents. The gain values of the PI controller are obtained using an extended bald eagle search (EBES) optimizer. In addition, a comparative study of three optimizers, namely, moth flame (MFO), cuckoo search (CSA), and salp swarm algorithm (SSA), is presented to test the performance of the PI controller and fast dynamic response. The results showed that the APF nearly obtained unity PF and that the harmonics produced as THD by LED light bulbs for current at the grid were abolished that becomes 3.29%. Additionally, the results verified that TL-UPQC could cancel voltage fluctuations at grid problems so that UPQC’s performance is successfully achieved to provide a flicker-free LED lighting network and this appeared clearly when used in LED lighting network at Cairo airport. MATLAB simulation has been employed to confirm the proposed TL-UPQC’s effectiveness

    Improved Instantaneous Reactive Power (PQ) Theory Based Control of DVR for Compensating Extreme Sag and Swell

    No full text
    In today’s power system, power quality is a critical topic having several impacts on customers and utilities. In the current electric power system, the integration of renewable energy sources, smart grid technologies, and significant usage of power electronics equipment has generated a slew of issues. The sensitive equipment might be damaged by harmonics, voltage sag, and swell. These devices are vulnerable to Interference with other elements of the system resulting in input voltage changes. As a result, in the contemporary period, Power quality is becoming more important as the number of sensitive and costly electronic devices grows. To overcome the challenges of non-standard voltage, the Dynamic Voltage restorer (DVR) device has been extensively utilized to keep the load voltage stable. To have a dynamic and fast response of the DVR a modified instantaneous reactive power (PQ) theory is proposed to control DVR under extreme transient voltage circumstances. The proposed technique is based on the extraction of the positive sequence component of grid voltage and the negative sequence component of load current for generating a voltage reference signal. The power system network with the proposed PQ control scheme is investigated and assessed under various scenarios to compensate for severe balanced, unbalanced (voltage sags and swells), and load change. MATLAB/Simulink is used to verify the mathematical models of the conventional PQ and proposed PQ control system for DVR. The complete system is implemented experimentally using a dSPACE 1104 based laboratory system to validate the presented control scheme. The simulation and experimental results are correlated, demonstrating the efficacy of the suggested modified PQ control technique

    Multilevel converter to access maximum power from distributed energy source based smart grids

    Get PDF
    The distributed power generation is increasing rapidly, and its integration into the power system is a critical issue for the existing power network. Therefore, a three-level converter is developed to access and control the medium voltage DC generated from a photovoltaic system in a smart grid. A conventional three-level neutral point clamped circuit is incorporated into the conventional inverter. The conventional inverter is a pulse width modulation-based inverter that achieves zero switching currents and supplies power to the load. This technique suppresses the switching power loss up to a large extent. Additionally, switches conduct half of the input voltage; therefore, the output voltage is significantly similar to the voltage of the output filter. Moreover, in the proposed converter, the stress of voltage on diodes is minimal, which increases the input range of voltage in smart grids. The overall efficiency of converter is around 97.9% and voltage gain is around 42. In addition to these, a detailed design description and analysis are carried out in this paper. In the end, a prototype is developed for experimental analysis to validate the operating principle and characteristics of the proposed converter

    Support Vector Machine Parameters Optimization for 500 kV Long OHTL Fault Diagnosis

    No full text
    Faults can seriously damage high-voltage (HV) power systems, particularly if they occur on the long overhead transmission line (OHTL) that connects the nuclear power plant (NPP) to the electrical grid. Finding OHTL problems quickly and accurately is essential for the economy, safety, and dependability of the HV power systems. It is essential to pinpoint the problematic phase to avoid unneeded power outages. Thus, one of the most crucial research challenges is now how to identify, classify, and locate OHTL faults. In this study, transient current with high frequency oscillations that arise immediately after a defect at the sending end is investigated in a single-circuit, single-side fed Egyptian 500-kV HV long OHTL. Asymmetric and symmetric faults and locations are also represented in the Alternative Transients Program-Electro Magnetic Transients Program (ATP/EMTP) simulation model under varying fault resistance and inception angles. The proposed solution in this paper is an Optimized Support Vector Machine (OSVM), whose characteristics are optimized via a mutant particle swarm optimization (MPSO) method to detect 500 kV long OHTL faults. The localizer model is also built for practical applications, including power system noise contaminating fault signals. The findings prove that the suggested approach locates the fault in 0.012 seconds from the start of the event, with a 0.0098 percent average percentage error, and without being impacted by differences in fault distance, fault resistance, noise, or fault inception angle. Additionally, the optimised classifier reaches a 99.85% accuracy rate, enhancing line system dependability and advancing nuclear system development

    Robust Speed Controller for PMSG Wind System Based on Harris Hawks Optimization via Wind Speed Estimation: A Real Case Study

    No full text
    Modern wind power systems have recently tended to focus on achieving fast-tracking wind speeds (WSs), high maximum power point tracking (MPPT) efficacy without mechanical sensors, and high performance under uncertain WS together with an effective control system. Therefore, a sensorless MPPT method is introduced, which calculates the actual WS to save system installation costs and boost performance levels. The implemented MPPT method is based on the approximating of the 3-order polynomial to the aerodynamics torque power coefficient. In this study, three-speed control strategies (SCSs) for a grid-connected permanent magnet synchronous wind generator (PMSWG) are examined and assessed. Harris Hawks’ algorithm (HHA)-based PI controller (HHA-PIC) is used in place of (the conventional proportional-integral controller (CPIC), and adaptive fuzzy logic controller (AFLC)) as a speed controller to overcome their drawbacks. To track the generator speed to the desired speed, the HHA-PIC is used. All the CPIC, AFLC, and HHA-PIC have been carefully thought out and constructed to satisfy the speed control loop’s responsive performance. Additionally, a comparison of SCSs amongst the categories under investigation is done. The effect of HHA on the functionality of SCS is verified using MATLAB/SIMULINK. To ensure the efficacy and supremacy of the HHA-PIC over the CPIC and AFLC, a wide variety of WSs (step change, ramp, and real fluctuations) are applied. The HHA-PIC boosts system efficiency over AFLC and CPIC by 0.81% and 8.48%, respectively. Finally, it can be said that HHA is a crucial remedy for the problems with CPIC and is superior to AFLC

    Comparative Analysis of Reactive Power Compensation Devices in a Real Electric Substation

    No full text
    A constant worldwide growing load stress over a power system compelled the practice of a reactive power injection to ensure an efficient power network. For this purpose, multiple technologies exist in the knowledge market out of which this paper emphasizes the usage of the flexible alternating current transmission system (FACTS) and presents a comparative study of the static var compensator (SVC) with the static synchronous compensator (STATCOM), inducted in a real electric substation. The aim is to improve the power factor (PF) and power quality and to encounter reliably extreme conditions. A 220 kV electric substation was opted for the analysis, and both the static and dynamic conditions were observed with the help of a power system analysis tool termed PowerFactory-DIgSILENT. Multiple aspects were investigated via software simulations to assess the performance of the aforementioned FACTS devices, such as the voltage profile evaluation via the load flow analysis method (LFA), the harmonic response via the power quality and harmonic analysis tool, and the short-circuit response via the RMS simulation tool. The outcomes were verified and compared with permissible values included in the universal standards, such as IEC and IEEE. The superiority of the STATCOM over the SVC was proven in light of the simulative results

    Improving Power Quality Problems of Isolated MG Based on ANN Under Different Operating Conditions Through PMS and ASSC Integration

    No full text
    Microgrid (MG) technologies assist the power grid in evolving to become more efficient, less polluting, and more resilient by addressing the requirements of energy users. However, several technological issues arise as a result of the unpredictability and difficulty in estimating the efficacy and regulation of the many renewable energy resources (RERs) incorporated in MGs. Two of the most significant of these issues are maintaining system stability and power quality, which necessitate to get better the performance of the MGs. The most difficult challenge, system stability, can be achieved with successful Power Management System (PMS). This paper proposes an effective PMS for an AC MG equipped with a diesel generator (DG), a permanent magnet wind generator (PMWG), and a solar photovoltaic (PV) panel Based on an adaptable Artificial Neural Network (ANN). The ANN weights are properly tuned via the Enhanced Bald Eagle Search (EBES) optimization algorithm to produce a stable system during the whole training period, achieve MG energy balance, reduce the usage of fossil fuel DG and maintain MG voltage stability. In addition, for keeping power quality, an adaptive series shunt compensator (ASSC) is described in this work, along with a developed integrative PID controller, where the latter’s controller gains are ideally set utilizing the EBES optimization algorithm to perform adaptably with self-tuning when the operational circumstances of an MG change. various cases are displayed to test the strong of offered ASSC on harmonic mitigation, dynamic voltage stabilization, reactive power control and power factor correction. Moreover, comprehensive case study based on realistic on-site location for Zafarana region, Suez Gulf region of Egypt is proposed. Taking into account The changing nature of weather-related renewable energy, actual loads states and transient faults

    Comparative Analysis of Reactive Power Compensation Devices in a Real Electric Substation

    No full text
    A constant worldwide growing load stress over a power system compelled the practice of a reactive power injection to ensure an efficient power network. For this purpose, multiple technologies exist in the knowledge market out of which this paper emphasizes the usage of the flexible alternating current transmission system (FACTS) and presents a comparative study of the static var compensator (SVC) with the static synchronous compensator (STATCOM), inducted in a real electric substation. The aim is to improve the power factor (PF) and power quality and to encounter reliably extreme conditions. A 220 kV electric substation was opted for the analysis, and both the static and dynamic conditions were observed with the help of a power system analysis tool termed PowerFactory-DIgSILENT. Multiple aspects were investigated via software simulations to assess the performance of the aforementioned FACTS devices, such as the voltage profile evaluation via the load flow analysis method (LFA), the harmonic response via the power quality and harmonic analysis tool, and the short-circuit response via the RMS simulation tool. The outcomes were verified and compared with permissible values included in the universal standards, such as IEC and IEEE. The superiority of the STATCOM over the SVC was proven in light of the simulative results

    Application of a Novel Synergetic Control for Optimal Power Extraction of a Small-Scale Wind Generation System with Variable Loads and Wind Speeds

    No full text
    The synergetic control technique (SCT) has the solution for understanding the symmetry inherent in the non-linear properties of wind turbines (WTs); therefore, they achieve excellent performance and enhance the operation of the WT. Small-scale WTs are efficient and cost-effective; they are usually installed close to where the generated electricity is used. This technology is gaining popularity worldwide for off-grid electricity generation, such as in rural homes, farms, small factories, and commercial properties. To enhance the efficiency of the WT, it is vital to operate the WT at its maximum power. This work proposes an efficient and fast maximum power point tracking (MPPT) technique based on the SCT to eradicate the drawbacks of the conventional methods and enhance the operation of the WT at the MPP regardless of wind speed and load changes. The SCT has advantages, such as robustness, simplified design, fast response, no requirement for knowledge of WT characteristics, no need for wind sensors or intricate power electronics, and straightforward implementation. Furthermore, it improves speed convergence with minimal steady-state oscillations at the MPP. The investigated configuration involves a wind-driven permanent magnet synchronous generator (PMSG), uncontrolled rectifier, boost converter, and variable load. The two converters are used to integrate the PMSG with the load. Three scenarios (step changes in wind speed, stochastic changes in wind speed, and variable electrical load) are studied to assess the SCT. The results prove a high performance of the suggested MPPT control method for a fast convergence speed, boosted WT efficacy, low oscillation levels, and applicability under a variety of environmental situations. This work used the MATLAB/Simulink program and was then implemented on a dSPACE 1104 control board to assess the efficacy of the SCT. Furthermore, experimental validation on a 1 kW Darrieus-type WT driving a PMSG was performed
    corecore