11 research outputs found

    A State-of-the-Art review on the drive of renewables in Gujarat, State of India: Present situation, barriers and future initiatives

    Get PDF
    Given the recent increasing public focus on climate change issues, the share of electricity generation by renewable energy resources is increasing day by day. Increased renewables share will give us robust, sustainable, and climate-friendly energy systems for the future. Renewable energy penetration with the current power systems needs substantial research, planning and development which are now the primary focus throughout the world. In this study, a global renewable energy scenario is explained in detail in contrast with India, considering a case study elucidating the comprehensive review of the Gujarat state in India. The primary focus is on Gujarat state’s actions plans to pertain to harvest renewable energy and maximizing its share in the energy mix. This study examines the actions and the policies adopted by the Gujarat government to overcome the potential barriers in order to support non-conventional as well as renewable energy development. It also investigates the numerous techno-economic and social constraints with possible solutions in promoting the deployment of upcoming renewable energy resources across Gujarat. This study can be used as a guideline for the government, policymakers, utilities, stakeholders and researchers to promote an increased renewable energy share in Gujarat as well as at other places around the globe

    Hybrid renewable energy microgrid for a residential community: A techno-economic and environmental perspective in the context of the SDG7

    Get PDF
    Energy, being a prime enabler in achieving sustainable development goals (SDGs), should be affordable, reliable, sustainable, and modern. One of the SDGs (i.e., SDG7) suggests that it is necessary to ensure energy access for all. In developing countries like India, the progress toward SDG7 has somewhat stagnated. The aging conventional electric power system has its dominant share of energy from fossil fuels, plagued with frequent power outages, and leaves many un-electrified areas. These are not characteristics of a sustainable and modern system in the context of the SDG7. Promoting renewable-based energy systems, especially in the context of microgrids (MGs), is one of the promising advances needed to rejuvenate the progress toward the SDG7. In this context, a hybrid renewable energy microgrid (HREM) is proposed that gives assurance for energy access to all in an affordable, reliable, and sustainable way through modern energy systems. In this paper, a techno-economic and environmental modeling of the grid-independent HREM and its optimization for a remote community in South India are presented. A case of HREM with a proposed configuration of photovoltaic/wind turbine/diesel generator/battery energy storage system (PV/WT/DG/BESS) was modeled to meet the community residential electric load requirements. This investigation dealt with the optimum sizes of the different components used in the HREM. The results of this model presented numerous feasible solutions. Sensitivity analysis was conducted to identify the best solution from the four optimized results. From the results, it was established that a PV + DG + BESS based HREM was the most cost-effective configuration for the specific location. In addition, the obtained optimum solutions were mapped with the key criteria of the SDG7. This mapping also suggested that the PV + DG + BESS configuration falls within the context of the SDG7. Overall, it is understood that the proposed HREM would provide energy access to households that is affordable, reliable, sustainable, and modern

    Dynamic frequency and overload management in autonomous coupled microgrids for self-healing and resiliency improvement

    Get PDF
    Autonomous microgrids (MGs) are being installed in large remote areas to supply power where access to the utility grid is unavailable or infeasible. The power generation of such standalone MGs is largely dominated by renewable based energy sources where overloading or power deficiencies can be common due to the high intermittency and uncertainty in both load and power generation. Load-shedding is the most common mechanism to alleviate these problems to prevent system instability. To minimize load-shedding, most MGs are equipped with local battery energy storage (BES) systems to provide additional support. Furthermore, in the event of severe overloading or when BES capacity is insufficient to alleviate the overload, neighboring MGs can be provisionally coupled to provide mutual support to each other which is a more effective, economic and reliable approach. Such a coupling is preferred to be via power electronic converters to enhance the autonomy of the MGs. This paper proposes a two-stage, coordinated power sharing strategy among BESs and coupled MGs for overload management in autonomous MGs, through dynamic frequency control. Both local BES and the neighboring MGs can work in conjunction or individually to supply the required overload power demand. For this, BES’ state of charge should be above a minimum level and extra power generation capacity needs to be available in the neighboring MGs. A predefined framework with appropriate constraints and conditions, under which the power exchange will take place, are defined and formulated. The proposed mechanism is a decentralized approach, operating based on local frequency and state of charge measurements, and without any data communication amongst the MGs. The dynamic performance of such a network, is evaluated through extensive simulation studies in PSIM Ⓡ and verifies that the proposed strategy can successfully alleviate the overloading situation in the MGs through proper frequency regulation

    Real-time Processor-in-Loop investigation of a modified non-linear state observer using sliding modes for speed sensorless induction motor drive in electric vehicles

    Get PDF
    Tracking performance and stability play a major role in observer design for speed estimation purpose in motor drives used in vehicles. It is all the more prevalent at lower speed ranges. There was a need to have a tradeoff between these parameters ensuring the speed bandwidth remains as wide as possible. This work demonstrates an improved static and dynamic performance of a sliding mode state observer used for speed sensorless 3 phase induction motor drive employed in electric vehicles (EVs). The estimated torque is treated as a model disturbance and integrated into the state observer while the error is constrained in the sliding hyperplane. Two state observers with different disturbance handling mechanisms have been designed. Depending on, how they reject disturbances, based on their structure, their performance is studied and analyzed with respect to speed bandwidth, tracking and disturbance handling capability. The proposed observer with superior disturbance handling capabilities is able to provide a wider speed range, which is a main issue in EV. Here, a new dimension of model based design strategy is employed namely the Processor-in-Loop. The concept is validated in a real-time model based design test bench powered by RT-lab. The plant and the controller are built in a Simulink environment and made compatible with real-time blocksets and the system is executed in real-time targets OP4500/OP5600 (Opal-RT). Additionally, the Processor-in-Loop hardware verification is performed by using two adapters, which are used to loop-back analog and digital input and outputs. It is done to include a real-world signal routing between the plant and the controller thereby, ensuring a real-time interaction between the plant and the controller. Results validated portray better disturbance handling, steady state and a dynamic tracking profile, higher speed bandwidth and lesser torque pulsations compared to the conventional observer

    Prospects of hybrid renewable energy-based power system: A case study, post analysis of Chipendeke Micro-Hydro, Zimbabwe

    Get PDF
    Fossil fuel-based energy sources are the major contributors to greenhouse gas (GHG) emission and thus the use of renewable energy (RE) is becoming the best alternative to cater for the increasing energy demand in both developing and developed nations. Chipendeke is a rural community in Zimbabwe, in which electricity demand is partially served by the only micro-hydro plant and hence, load shedding is a regular practice to keep essential services running. This study explored a suitable opportunity to identify a feasible system with different energy sources that can fulfill the current and projected future load demand of the community. A techno-economic feasibility study for a hybrid RE based power system (REPS) is examined considering various energy sources and cost functions. Six different system configurations have been designed with different sizing combinations to identify the most optimum solution for the locality considering techno-economic and environmental viability. The performance metrics considered to evaluate the best suitable model are; Net Present Cost (NPC), Cost of Energy (COE), Renewable Fraction (RF), excess energy and seasonal load variations. In-depth, sensitivity analyses have been performed to investigate the variations of the studied models with a little variation of input variables. Of the studied configurations, an off-grid hybrid Hydro/PV/DG/Battery system was found to be the most economically feasible compared to other configurations. This system had the lowest NPC and COE of 307,657and 307,657 and 0.165/kWh respectively and the highest RF of 87.5%. The proposed hybrid system could apply to any other remote areas in the region and anywhere worldwide

    Power enhancement with grid stabilization of renewable energy-based generation system using UPQC-FLC-EVA technique

    Get PDF
    The proposed work focuses on the power enhancement of grid-connected solar photovoltaic and wind energy (PV-WE) system integrated with an energy storage system (ESS) and electric vehicles (EVs). The research works available in the literature emphasize only on PV, PV-ESS, WE, and WE-ESS. The enhancement techniques such as Unified Power Flow Controller (UPFC), Generalized UPFC (GUPFC), and Static Var Compensator (SVC) and Artificial Intelligence (AI)-based techniques including Fuzzy Logic Controller (FLC)-UPFC, and Unified Power Quality Conditioner (UPQC)-FLC have been perceived in the existing literature for power enhancement. Further, the EVs are emerging as an integral domain of the power grid but because of the uncertainties and limitations involved in renewable energy sources (RESs) and ESS, the EVs preference towards the RES is shifted away. Therefore, it is required to focus on improving the power quality of the PV-WE-ESS-EV system connected with the grid, which is yet to be explored and validated with the available technique for enhancing power quality. Furthermore, in the case of the bidirectional power flow from vehicle-to-grid (V2G) and grid-to-vehicle (G2V), optimal controlling is crucial for which an electric vehicle aggregator (EVA) is designed. The designed EVA is proposed for the PV-WE-ESS-EV system so as to obtain the benefits such as uninterruptible power supply, effective the load demand satisfaction, and efficient utilization of the electrical power. The power flow from source to load and from one source to another source is controlled with the support of FLC. The FLC decides the economic utilization of power during peak load and off-peak load. The reduced power quality at the load side is observed as a result of varying loads in the random fashion and this issue is sorted out by using UPQC in this proposed study. From the results, it can be observed that the maximum power is achieved in the case of PV and WE systems with the help of the FLC-based maximum power point tracking (MPPT) technique. Furthermore, the artificial neural network (ANN)-based technique is utilized for the development of the MPPT algorithm which in turn is employed for the validation of the proposed technique. The outputs of both the techniques are compared to select the best-performing technique. A key observation from the results and analysis indicates that the power output from FLC-based MPPT is better than that of ANN-based MPPT. Thus, the proper and economical utilization of power is achieved with the help of FLC and UPQC. It can be inferred that the EVs can play a vital role in imparting the flexibility in terms of power consumption and grid stabilization during peak load and off-peak load durations provided that the proper control techniques and grid integration are well-established

    Impacts of COVID-19 on Sustainable Development Goals and effective approaches to maneuver them in the post-pandemic environment

    No full text
    In the pursuit of constructing a sustainable world for all through the instrumental seventeen Sustainable Development Goals, the COVID-19 pandemic emerged and affected the efforts concentrated on these goals. Therefore, there is a pressing need to analyze the extent of the impact that unfolded from the pandemic on each Sustainable Development Goal and further to direct the post-pandemic situation to accelerate the progress in every goal. Besides, there exists a knowledge gap in understanding the Sustainable Development Goals and its interaction with each goal through synergic and trade-off effects. To address the aforementioned imperative problems, this study is formulated to perform an impact assessment as well as to provide direction in the post-pandemic environment to effectively progress towards the Sustainable Development Goals by using a hybrid qualitative and quantitative framework. A detailed investigation is carried out to examine the pandemic impacts in every goal, and a quantified impact analysis is performed in terms of the targets of the Sustainable Development Goals with the aid of ranking methodology. The results indicate that SDG 1 and SDG 8 are the most impacted goal. To provide deeper perspectives into the Sustainable Development Goals, a critical analysis of the targets and indicators is performed to characterize the goals from their elemental point of view, such as nature of goals, depending factors, locus of the goal, and Sustainable Development Goal interactions. Further, a novel parameter, the degree of randomness, is proposed whose application in environmental research is immense. The impact on each goal and impact interaction between all the SDGs are also mapped, through which the dynamics of Sustainable Development Goal interactions is elaborated. In context with the post-pandemic scenario, the strategies to achieve the Sustainable Development Goals with environmental focus are presented with prioritization factor that supports quick recovery. The introduced prioritization factor is formulated by employing a multi-criteria analysis methodology. In addition, the fundamental elements of SDGs are built upon one another to frame an optimized and effective approach to achieving the SDGs in the post-pandemic environment. Despite the strategies, a conceptual framework to align the business practices with the SDGs is propounded. This study deep down would provide a unique perspective to the research community and would impart deeper knowledge in connection with sustainability, while the solutions framed would steer the policy and decision-makers

    COVID-19: Impact analysis and recommendations for power sector operation

    No full text
    The demand of electricity has been reduced significantly due to the recent COVID-19 pandemic. Governments around the world were compelled to reduce the business activity in response to minimize the threat of coronavirus. This on-going situation due to COVID-19 has changed the lifestyle globally as people are mostly staying home and working from home if possible. Hence, there is a significant increase in residential load demand while there is a substantial decrease in commercial and industrial loads. This devastating situation creates new challenges in the technical and financial activities of the power sector and hence most of the utilities around the world initiated a disaster management plan to tackle this ongoing challenges/threats. Therefore, this study aims to investigate the global scenarios of power systems during COVID-19 along with the socio-economic and technical issues faced by the utilities. Then this study further scrutinized the Indian power system as a case study and explored scenarios, issues and challenges currently being faced to manage the consumer load demand, including the actions taken by the utilities/power sector for the smooth operation of the power system. Finally, a set of recommendations are presented that will not only help government/policymakers/utilities around the world to overcome the current crisis but also helps to overcome future unforeseeable pandemic alike scenarios

    Energy storage technologies:An integrated survey of developments, global economical/environmental effects, optimal scheduling model, and sustainable adaption policies

    No full text
    Energy Storage Technology is one of the major components of renewable energy integration and decarbonization of world energy systems. It significantly benefits addressing ancillary power services, power quality stability, and power supply reliability. However, the recent years of the COVID-19 pandemic have given rise to the energy crisis in various industrial and technology sectors. An integrated survey of energy storage technology development, its classification, performance, and safe management is made to resolve these challenges. The development of energy storage technology has been classified into electromechanical, mechanical, electromagnetic, thermodynamics, chemical, and hybrid methods. The current study identifies potential technologies, operational framework, comparison analysis, and practical characteristics. This proposed study also provides useful and practical information to readers, engineers, and practitioners on the global economic effects, global environmental effects, organization resilience, key challenges, and projections of energy storage technologies. An optimal scheduling model is also proposed. Policies for sustainable adaptation are then described. An extensive list of publications to date in the open literature is canvassed to portray various developments in this area
    corecore