809 research outputs found

    Advanced protective coating for superalloys

    Get PDF
    Superior oxidation protection for nickel-base alloys at temperatures up to 1367 K was obtained with cobalt-base alloy coating. Coating had 25 Cr, 14 Al, and 0.5 Y weight percent composition. Coating was applied by electron beam vapor deposition to thickness of 76 to 127 microns

    Sexually transmitted infection risk exposure among black and minority ethnic youth in northwest London: findings from a study translating a sexually transmitted infection risk-reduction intervention to the UK setting.

    No full text
    OBJECTIVES: Young black women are disproportionately affected by sexually transmitted infections (STI) in the UK, but effective interventions to address this are lacking. The Young Brent Project explored the nature and context of sexual risk-taking in young people to inform the translation of an effective clinic-based STI reduction intervention (Project SAFE) from the USA to the UK. METHODS: One-to-one in-depth interviews (n = 37) and group discussions (n = 10) were conducted among men and women aged 15-27 years from different ethnic backgrounds recruited from youth and genitourinary medicine clinic settings in Brent, London. The interviews explored the context within which STI-related risks were assessed, experienced and avoided, the skills needed to recognise risk and the barriers to behaviour change. RESULTS: Concurrent sexual partnerships, mismatched perceptions and expectations, and barriers to condom use contributed to STI risk exposure and difficulties in implementing risk-reduction strategies. Women attempted to achieve monogamy, but experienced complex and fluid sexual relationships. Low risk awareness, flawed partner risk assessments, negative perceptions of condoms and lack of control hindered condom use. Whereas men made conscious decisions, women experienced persuasion, deceit and difficulty in requesting condom use, particularly with older partners. CONCLUSIONS: Knowledge of STI and condom use skills is not enough to equip young people with the means to reduce STI risk. Interventions with young women need to place greater emphasis on: entering and maintaining healthy relationships; awareness of risks attached to different forms of concurrency and how concurrency arises; skills to redress power imbalances and building self-esteem

    Deconvolving Instrumental and Intrinsic Broadening in Excited State X-ray Spectroscopies

    Full text link
    Intrinsic and experimental mechanisms frequently lead to broadening of spectral features in excited-state spectroscopies. For example, intrinsic broadening occurs in x-ray absorption spectroscopy (XAS) measurements of heavy elements where the core-hole lifetime is very short. On the other hand, nonresonant x-ray Raman scattering (XRS) and other energy loss measurements are more limited by instrumental resolution. Here, we demonstrate that the Richardson-Lucy (RL) iterative algorithm provides a robust method for deconvolving instrumental and intrinsic resolutions from typical XAS and XRS data. For the K-edge XAS of Ag, we find nearly complete removal of ~9.3 eV FWHM broadening from the combined effects of the short core-hole lifetime and instrumental resolution. We are also able to remove nearly all instrumental broadening in an XRS measurement of diamond, with the resulting improved spectrum comparing favorably with prior soft x-ray XAS measurements. We present a practical methodology for implementing the RL algorithm to these problems, emphasizing the importance of testing for stability of the deconvolution process against noise amplification, perturbations in the initial spectra, and uncertainties in the core-hole lifetime.Comment: 35 pages, 13 figure

    The Human Connectome Project: A retrospective

    Get PDF
    The Human Connectome Project (HCP) was launched in 2010 as an ambitious effort to accelerate advances in human neuroimaging, particularly for measures of brain connectivity; apply these advances to study a large number of healthy young adults; and freely share the data and tools with the scientific community. NIH awarded grants to two consortia; this retrospective focuses on the WU-Minn-Ox HCP consortium centered at Washington University, the University of Minnesota, and University of Oxford. In just over 6 years, the WU-Minn-Ox consortium succeeded in its core objectives by: 1) improving MR scanner hardware, pulse sequence design, and image reconstruction methods, 2) acquiring and analyzing multimodal MRI and MEG data of unprecedented quality together with behavioral measures from more than 1100 HCP participants, and 3) freely sharing the data (via the ConnectomeDB database) and associated analysis and visualization tools. To date, more than 27 Petabytes of data have been shared, and 1538 papers acknowledging HCP data use have been published. The HCP-style neuroimaging paradigm has emerged as a set of best-practice strategies for optimizing data acquisition and analysis. This article reviews the history of the HCP, including comments on key events and decisions associated with major project components. We discuss several scientific advances using HCP data, including improved cortical parcellations, analyses of connectivity based on functional and diffusion MRI, and analyses of brain-behavior relationships. We also touch upon our efforts to develop and share a variety of associated data processing and analysis tools along with detailed documentation, tutorials, and an educational course to train the next generation of neuroimagers. We conclude with a look forward at opportunities and challenges facing the human neuroimaging field from the perspective of the HCP consortium

    The influence of corrosion on diamond-like carbon topography and friction at the nanoscale

    Get PDF
    The influence of corrosion upon the nanoscale topography and friction response of a hydrogenated amorphous carbon film (a-C:H) was investigated. Electrochemical atomic force microscopy was used to characterise topographical changes to the coating at two oxidative potentials. Corrosion of the coating at 1.5 V (corrosion rate 0.5 nm h−1) resulted in no changes to the nanoscale topography; whereas corrosion at 2.5 V (corrosion rate 26.4 nm h−1) caused the root mean square roughness of the a-C:H film topography to decrease, but the local fine-scale irregularity or ‘jaggedness’ of the surface to increase. X-ray photoelectron spectroscopy revealed that corrosion at both potentials oxidised the a-C:H surface to form alcohol, carbonyl and carboxyl groups. Lateral force microscopy and adhesion force measurements showed that both the friction force and surface adhesion of the coating increased upon corrosion. The outcome was attributed to the surface oxidation that had occurred at both oxidative potentials, resulting in several potential mechanisms including increased attractive intermolecular interactions and capillary forces. The highest friction coefficient was observed for the a-C:H film corroded at 2.5 V, and identified as a consequence of the jagged surface topography promoting an interlocking friction mechanism

    Ultrathin Oxide Films by Atomic Layer Deposition on Graphene

    Full text link
    In this paper, a method is presented to create and characterize mechanically robust, free standing, ultrathin, oxide films with controlled, nanometer-scale thickness using Atomic Layer Deposition (ALD) on graphene. Aluminum oxide films were deposited onto suspended graphene membranes using ALD. Subsequent etching of the graphene left pure aluminum oxide films only a few atoms in thickness. A pressurized blister test was used to determine that these ultrathin films have a Young's modulus of 154 \pm 13 GPa. This Young's modulus is comparable to much thicker alumina ALD films. This behavior indicates that these ultrathin two-dimensional films have excellent mechanical integrity. The films are also impermeable to standard gases suggesting they are pinhole-free. These continuous ultrathin films are expected to enable new applications in fields such as thin film coatings, membranes and flexible electronics.Comment: Nano Letters (just accepted

    Epitaxial Stabilization of Face Selective Catalysts

    Get PDF
    Abstract Selective, active, and robust catalysts are necessary for the efficient utilization of new feedstocks. Faceselective catalysts can precisely modify catalytic properties, but are often unstable under reaction conditions, changing shape and losing selectivity. Herein we report a method for synthesizing stable heterogeneous catalysts in which the morphology and selectivity can be tuned precisely and predictably. Using nanocrystal supports, we epitaxially stabilize specific active phase morphologies. This changes the distribution of active sites of different coordination, which have correspondingly different catalytic properties. Specifically, we utilize the different interfacial free-energies between perovskite titanate nanocube supports with different crystal lattice dimensions and a platinum active phase. By substituting different sized cations into the support, we change the lattice mismatch between the support and the active phase, thereby changing the interfacial free-energy, and stabilizing the active phase in different morphologies in a predictable manner. We correlate these changes in active phase atomic coordination with changes in catalytic performance (activity and selectivity), using the hydrogenation of acrolein as a test reaction. The method is general and can be applied to many nanocrystal supports and active phase combinations. Keywords Epitaxy Á Perovskite Á Platinum Á Heterogeneous catalysis Á Hydrogenation Á Acrolein Controlling the morphology of catalytic metal nanoparticles has incredible potential for improving selectivity and yield. This is because catalytic properties often depend upon the coordination of active site atoms We have recently observed that oriented oxide nanocrystal supports can epitaxially stabilize a specific orientation and morphology of the active phas

    Integration of decision support systems to improve decision support performance

    Get PDF
    Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes
    corecore