34 research outputs found

    Genome-Wide Analysis of Transcriptional Reprogramming in Mouse Models of Acute Myeloid Leukaemia

    Get PDF
    Acute leukaemias are commonly caused by mutations that corrupt the transcriptional circuitry of haematopoietic stem/progenitor cells. However, the mechanisms underlying large-scale transcriptional reprogramming remain largely unknown. Here we investigated transcriptional reprogramming at genome-scale in mouse retroviral transplant models of acute myeloid leukaemia (AML) using both gene-expression profiling and ChIP-sequencing. We identified several thousand candidate regulatory regions with altered levels of histone acetylation that were characterised by differential distribution of consensus motifs for key haematopoietic transcription factors including Gata2, Gfi1 and Sfpi1/Pu.1. In particular, downregulation of Gata2 expression was mirrored by abundant GATA motifs in regions of reduced histone acetylation suggesting an important role in leukaemogenic transcriptional reprogramming. Forced re-expression of Gata2 was not compatible with sustained growth of leukaemic cells thus suggesting a previously unrecognised role for Gata2 in downregulation during the development of AML. Additionally, large scale human AML datasets revealed significantly higher expression of GATA2 in CD34+ cells from healthy controls compared with AML blast cells. The integrated genome-scale analysis applied in this study represents a valuable and widely applicable approach to study the transcriptional control of both normal and aberrant haematopoiesis and to identify critical factors responsible for transcriptional reprogramming in human cancer

    p210 Bcr - Abl expression in a primitive multipotent haematopoietic cell line models the development of chronic myeloid leukaemia

    No full text
    Chronic myeloid leukaemia (CML) is a clonal disorder of the pluripotent haemopoietic stem cell, the hallmark of which is the constitutively activated Bcr-Abl protein tyrosine kinase. During the initial chronic phase of CML the primitive multipotent leukaemic progenitor cells remain growth factor dependent and are capable of producing terminally differentiated cells. Although the available evidence suggests that Bcr-Abl directly affects signalling pathways involved in controlling the development of primitive haemopoietic progenitors the identification of the specific biological consequences of Bcr-Abl activity in these progenitors has been hampered by the lack of suitable systems modelling CML. By transfecting the multipotent haemopoietic cell line FDCP-Mix with a temperature sensitive mutant of Bcr-Abl we have developed the first working model that mirrors the chronic phase of CML. FDCP-Mix cells expressing Bcr-Abl tyrosine kinase activity remain growth factor dependent and retain their ability to differentiate. Normal neutrophilic cells are formed in response to G-CSF and GM-CSF. In addition, the transfected FDCP-Mix cells grown at the permissive temperature for Bcr-Abl tyrosine kinase activity display enhanced survival and proliferation in low concentrations of growth factor. These findings are consistent with the initial subtle changes seen in CML progenitor cells during the chronic phase and confirm that Bcr-Abl effects are context specific, i.e. they depend on the origin and developmental potential of the transfected cells. This questions the significance of studies in non-haemopoietic and differentiation blocked haemopoietic cells
    corecore