19 research outputs found

    Germline breast cancer susceptibility genes, tumor characteristics, and survival.

    Get PDF
    BACKGROUND: Mutations in certain genes are known to increase breast cancer risk. We study the relevance of rare protein-truncating variants (PTVs) that may result in loss-of-function in breast cancer susceptibility genes on tumor characteristics and survival in 8852 breast cancer patients of Asian descent. METHODS: Gene panel sequencing was performed for 34 known or suspected breast cancer predisposition genes, of which nine genes (ATM, BRCA1, BRCA2, CHEK2, PALB2, BARD1, RAD51C, RAD51D, and TP53) were associated with breast cancer risk. Associations between PTV carriership in one or more genes and tumor characteristics were examined using multinomial logistic regression. Ten-year overall survival was estimated using Cox regression models in 6477 breast cancer patients after excluding older patients (≥75years) and stage 0 and IV disease. RESULTS: PTV9genes carriership (n = 690) was significantly associated (p < 0.001) with more aggressive tumor characteristics including high grade (poorly vs well-differentiated, odds ratio [95% confidence interval] 3.48 [2.35-5.17], moderately vs well-differentiated 2.33 [1.56-3.49]), as well as luminal B [HER-] and triple-negative subtypes (vs luminal A 2.15 [1.58-2.92] and 2.85 [2.17-3.73], respectively), adjusted for age at diagnosis, study, and ethnicity. Associations with grade and luminal B [HER2-] subtype remained significant after excluding BRCA1/2 carriers. PTV25genes carriership (n = 289, excluding carriers of the nine genes associated with breast cancer) was not associated with tumor characteristics. However, PTV25genes carriership, but not PTV9genes carriership, was suggested to be associated with worse 10-year overall survival (hazard ratio [CI] 1.63 [1.16-2.28]). CONCLUSIONS: PTV9genes carriership is associated with more aggressive tumors. Variants in other genes might be associated with the survival of breast cancer patients. The finding that PTV carriership is not just associated with higher breast cancer risk, but also more severe and fatal forms of the disease, suggests that genetic testing has the potential to provide additional health information and help healthy individuals make screening decisions

    The Role of the Extracellular Matrix and Tumor-Infiltrating Immune Cells in the Prognostication of High-Grade Serous Ovarian Cancer

    No full text
    Ovarian cancer is the eighth global leading cause of cancer-related death among women. The most common form is the high-grade serous ovarian carcinoma (HGSOC). No further improvements in the 5-year overall survival have been seen over the last 40 years since the adoption of platinum- and taxane-based chemotherapy. Hence, a better understanding of the mechanisms governing this aggressive phenotype would help identify better therapeutic strategies. Recent research linked onset, progression, and response to treatment with dysregulated components of the tumor microenvironment (TME) in many types of cancer. In this study, using bioinformatic approaches, we identified a 19-gene TME-related HGSOC prognostic genetic panel (PLXNB2, HMCN2, NDNF, NTN1, TGFBI, CHAD, CLEC5A, PLXNA1, CST9, LOXL4, MMP17, PI3, PRSS1, SERPINA10, TLL1, CBLN2, IL26, NRG4, and WNT9A) by assessing the RNA sequencing data of 342 tumors available in the TCGA database. Using machine learning, we found that specific patterns of infiltrating immune cells characterized each risk group. Furthermore, we demonstrated the predictive potential of our risk score across different platforms and its improved prognostic performance compared with other gene panels

    Breast cancer risk stratification for mammographic screening: A nation‐wide screening cohort of 24,431 women in Singapore

    No full text
    Abstract Background Breast cancer incidence is increasing in Asia. However, few women in Singapore attend routine mammography screening. We aim to identify women at high risk of breast cancer who will benefit most from regular screening using the Gail model and information from their first screen (recall status and mammographic density). Methods In 24,431 Asian women (50–69 years) who attended screening between 1994 and 1997, 117 developed breast cancer within 5 years of screening. Cox proportional hazard models were used to study the associations between risk classifiers (Gail model 5‐year absolute risk, recall status, mammographic density), and breast cancer occurrence. The efficacy of risk stratification was evaluated by considering sensitivity, specificity, and the proportion of cancers identified. Results Adjusting for information from first screen attenuated the hazard ratios (HR) associated with 5‐year absolute risk (continuous, unadjusted HR [95% confidence interval]: 2.3 [1.8–3.1], adjusted HR: 1.9 [1.4–2.6]), but improved the discriminatory ability of the model (unadjusted AUC: 0.615 [0.559–0.670], adjusted AUC: 0.703 [0.653–0.753]). The sensitivity and specificity of the adjusted model were 0.709 and 0.622, respectively. Thirty‐eight percent of all breast cancers were detected in 12% of the study population considered high risk (top five percentile of the Gail model 5‐year absolute risk [absolute risk ≥1.43%], were recalled, and/or mammographic density ≥50%). Conclusion The Gail model is able to stratify women based on their individual breast cancer risk in this population. Including information from the first screen can improve prediction in the 5 years after screening. Risk stratification has the potential to pick up more cancers

    Will Absolute Risk Estimation for Time to Next Screen Work for an Asian Mammography Screening Population?

    No full text
    Personalized breast cancer risk profiling has the potential to promote shared decision-making and improve compliance with routine screening. We assessed the Gail model’s performance in predicting the short-term (2- and 5-year) and the long-term (10- and 15-year) absolute risks in 28,234 asymptomatic Asian women. Absolute risks were calculated using different relative risk estimates and Breast cancer incidence and mortality rates (White, Asian-American, or the Singapore Asian population). Using linear models, we tested the association of absolute risk and age at breast cancer occurrence. Model discrimination was moderate (AUC range: 0.580–0.628). Calibration was better for longer-term prediction horizons (E/Olong-term ranges: 0.86–1.71; E/Oshort-term ranges:1.24–3.36). Subgroup analyses show that the model underestimates risk in women with breast cancer family history, positive recall status, and prior breast biopsy, and overestimates risk in underweight women. The Gail model absolute risk does not predict the age of breast cancer occurrence. Breast cancer risk prediction tools performed better with population-specific parameters. Two-year absolute risk estimation is attractive for breast cancer screening programs, but the models tested are not suitable for identifying Asian women at increased risk within this short interval

    Prognostic value of CD8 + PD-1+ immune infiltrates and PDCD1 gene expression in triple negative breast cancer

    No full text
    Abstract The role of programmed cell death protein-1 (PD-1)/programmed cell death ligand 1 (PD-L1) in triple negative breast cancer (TNBC) remains to be fully understood. In this study, we investigated the role of PD-1 as a prognostic marker for TNBC in an Asian cohort (n = 269). Samples from patients with TNBC were labeled with antibodies against PD-L1 and PD-1, and subjected to NanoString assays to measure the expression of immune-related genes. Associations between disease-free survival (DFS), overall survival (OS) and biomarker expression were investigated. Multivariate analysis showed that tumors with high PD-1+ immune infiltrates harbored significantly increased DFS, and this increase was significant even after controlling for clinicopathological parameters (HR 0.95; P = 0.030). In addition, the density of cells expressing both CD8 and PD-1, but not the density of CD8−PD-1+ immune infiltrates, was associated with improved DFS. Notably, this prognostic significance was independent of clinicopathological parameters and the densities of total CD8+ cell (HR 0.43, P = 0.011). At the transcriptional level, high expression of PDCD1 within the tumor was significantly associated with improved DFS (HR 0.38; P = 0.027). In line with these findings, high expression of IFNG (HR 0.38; P = 0.001) and IFN signaling genes (HR 0.46; p = 0.027) was also associated with favorable DFS. Inclusion of PD-1 immune infiltrates and PDCD1 gene expression added significant prognostic value for DFS (ΔLRχ2 = 6.35; P = 0.041) and OS (ΔLRχ2 = 9.53; P = 0.008), beyond that provided by classical clinicopathological variables. Thus, PD-1 mRNA and protein expression status represent a promising, independent indicator of prognosis in TNBC
    corecore