9 research outputs found

    Global haplotype partitioning for maximal associated SNP pairs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Global partitioning based on pairwise associations of SNPs has not previously been used to define haplotype blocks within genomes. Here, we define an association index based on LD between SNP pairs. We use the Fisher's exact test to assess the statistical significance of the LD estimator. By this test, each SNP pair is characterized as associated, independent, or not-statistically-significant. We set limits on the maximum acceptable proportion of independent pairs within all blocks and search for the partitioning with maximal proportion of associated SNP pairs. Essentially, this model is reduced to a constrained optimization problem, the solution of which is obtained by iterating a dynamic programming algorithm.</p> <p>Results</p> <p>In comparison with other methods, our algorithm reports blocks of larger average size. Nevertheless, the haplotype diversity within the blocks is captured by a small number of tagSNPs. Resampling HapMap haplotypes under a block-based model of recombination showed that our algorithm is robust in reproducing the same partitioning for recombinant samples. Our algorithm performed better than previously reported models in a case-control association study aimed at mapping a single locus trait, based on simulation results that were evaluated by a block-based statistical test. Compared to methods of haplotype block partitioning, we performed best on detection of recombination hotspots.</p> <p>Conclusion</p> <p>Our proposed method divides chromosomes into the regions within which allelic associations of SNP pairs are maximized. This approach presents a native design for dimension reduction in genome-wide association studies. Our results show that the pairwise allelic association of SNPs can describe various features of genomic variation, in particular recombination hotspots.</p

    Genetic Basis of Primary Angle Closure Glaucoma: the Role of Collagens and Extracellular Matrix

    Full text link
    This is an Editorial and does not have an abstract

    Mutation Screening of Six Exons of ABCA4 in Iranian Stargardt Disease Patients

    Full text link
    Purpose: Stargardt disease type 1 (STGD1) is a recessively inherited retinal disorder that can cause severe visual impairment. ABCA4 mutations are the usual cause of STGD1. ABCA4 codes a transporter protein exclusively expressed in retinal photoreceptor cells. The gene contains 50 exons. Mutations are most frequent in exons 3, 6, 12, and 13, and exons 10 and 42 each contain two common variations. We aimed to screen these exons for mutations in Iranian STGD1 patients. Methods: Eighteen STGD1 patients were recruited for genetic analysis. Diagnosis by retina specialists was based on standard criteria, including accumulation of lipofuscin. The six ABCA4 exons were PCR amplified and sequenced by the Sanger method. Results: One or more ABCA4-mutated alleles were identified in 5 of the 18 patients (27.8%). Five different mutations including two splice site (c.1356+1G&gt;A and c.5836-2A&gt;G) and three missense mutations (p.Gly1961Glu, p.Gly1961Arg, and p.Gly550Arg) were found. The p.Gly1961Glu mutation was the only mutation observed in two patients. Conclusion: As ABCA4 mutations in exons 6, 12, 10, and 42 were identified in approximately 25% of the patients studied, these may be appropriate exons for screening projects. As in other populations, STDG1 causative ABCA4 mutations are heterogeneous among Iranian patients, and p.Gly1961Glu may be relatively frequent

    Erratum – Carrier Status for P.Gly61Glu and P.Arg368His CYP1B1 Mutations Causing Primary Congenital Glaucoma in Iran

    Full text link
    This is an Erratum to "Carrier Status for p.Gly61Glu and p.Arg368His CYP1B1 Mutations Causing Primary Congenital Glaucoma in Iran" [J Ophthalmic Vis Res 2021;16(4):574–581] and does not have an abstract. Please download the PDF or view the article HTML

    SVEP1 as a Genetic Modifier of TEK-Related Primary Congenital Glaucoma

    No full text
    PURPOSE. Affecting children by age 3, primary congenital glaucoma (PCG) can cause debilitating vision loss by the developmental impairment of aqueous drainage resulting in high intraocular pressure (IOP), globe enlargement, and optic neuropathy. TEK haploinsufficiency accounts for 5% of PCG in diverse populations, with low penetrance explained by variable dysgenesis of Schlemm’s canal (SC) in mice. We report eight families with TEK-related PCG, and provide evidence for SVEP1 as a disease modifier in family 8 with a higher penetrance and severity. METHODS. Exome sequencing identified coding/splice site variants with an allele frequency less than 0.0001 (gnomAD). TEK variant effects were assayed in constructtransfected HEK293 cells via detection of autophosphorylated (active) TEK protein. An enucleated eye from an affected member of family 8 was examined via histology. SVEP1 expression in developing outflow tissues was detected by immunofluorescent staining of 7-day mouse anterior segments. SVEP1 stimulation of TEK expression in human umbilical vascular endothelial cells (HUVECs) was measured by TaqMan quantitative PCR. RESULTS. Heterozygous TEK loss-of-function alleles were identified in eight PCG families, with parent–child disease transmission observed in two pedigrees. Family 8 exhibited greater disease penetrance and severity, histology revealed absence of SC in one eye, and SVEP1:p.R997C was identified in four of the five affected individuals. During SC development, SVEP1 is secreted by surrounding tissues. SVEP1:p.R997C abrogates stimulation of TEK expression by HUVECs. CONCLUSIONS. We provide further evidence for PCG caused by TEK haploinsufficiency, affirm autosomal dominant inheritance in two pedigrees, and propose SVEP1 as a modifier of TEK expression during SC development, affecting disease penetrance and severity.Supported by the National Institutes of Health [R01EY014685 to T.Y., R01HL124120, T32DK108738, R01EY025799, and P30DK114857 to S.Q.]; the Research to Prevent Blindness Inc. [Lew R. Wasserman Award to T.Y.]; a University of Wisconsin Centennial Scholars Award [to T.Y.]; the Flinders Foundation and the National Health and Medical Research Council of Australia [APP1116360, APP1107098, and fellowship APP1154824 to J.C.]; the Foundation for Science and Technology, Human Potential Operational Program/European Social Fund [fellowship SFRH/BD/90445/2012 to S.C.]; the Agency for Science Technology and Research, under the Industry Alignment Fund - Pre-Positioning Programme, as part of the Innovations in Food & Chemical Safety Programme [H18/01/a0/b14 to V.L.]; the Ophthalmic Research Center of Shahid Beheshti University of Medical Sciences and the Iran National Science Foundation [940012 to E.E.]; a Core Grant for Vision Research from the National Eye Institute/National Institutes of Health to the University of Wisconsin-Madison [P30EY016665]; and an Unrestricted Grant from Research to Prevent Blindness, Inc. to the UW-Madison Department of Ophthalmology and Visual Sciences. The authors are grateful to the Vanderbilt clinical site of the Undiagnosed Diseases Network for contribution of one individual for this manuscript: John A Phillips III, John H. Newman, Joy Cogan, and Rizwan Hamid; supported in part by the National Institutes of Health Common Fund [UO1HG007674]

    International Nosocomial Infection Control Consortiu (INICC) report, data summary of 43 countries for 2007-2012. Device-associated module

    No full text
    We report the results of an International Nosocomial Infection Control Consortium (INICC) surveillance study from January 2007-December 2012 in 503 intensive care units (ICUs) in Latin America, Asia, Africa, and Europe. During the 6-year study using the Centers for Disease Control and Prevention's (CDC) U.S. National Healthcare Safety Network (NHSN) definitions for device-associated health care–associated infection (DA-HAI), we collected prospective data from 605,310 patients hospitalized in the INICC's ICUs for an aggregate of 3,338,396 days. Although device utilization in the INICC's ICUs was similar to that reported from ICUs in the U.S. in the CDC's NHSN, rates of device-associated nosocomial infection were higher in the ICUs of the INICC hospitals: the pooled rate of central line–associated bloodstream infection in the INICC's ICUs, 4.9 per 1,000 central line days, is nearly 5-fold higher than the 0.9 per 1,000 central line days reported from comparable U.S. ICUs. The overall rate of ventilator-associated pneumonia was also higher (16.8 vs 1.1 per 1,000 ventilator days) as was the rate of catheter-associated urinary tract infection (5.5 vs 1.3 per 1,000 catheter days). Frequencies of resistance of Pseudomonas isolates to amikacin (42.8% vs 10%) and imipenem (42.4% vs 26.1%) and Klebsiella pneumoniae isolates to ceftazidime (71.2% vs 28.8%) and imipenem (19.6% vs 12.8%) were also higher in the INICC's ICUs compared with the ICUs of the CDC's NHSN
    corecore