22 research outputs found

    RIN and transmission performance improvement using second order and broadband first order forward Raman pumping

    Get PDF
    Low RIN bidirectionally pumped Raman amplification is studied. We investigate the importance of the 1st order forward pump generation technique and optimize the forward pump characteristics to achieve RIN comparable with backward only pumping and increased transmission reach

    High efficiency supercontinuum generation using ultra-long Raman fiber cavities

    Get PDF
    Supercontinuum generation in a multi-fiber ultra-long Raman fiber laser cavity is experimentally investigated for the first time. We demonstrate significantly enhanced spectral flatness and supercontinuum generation efficiency using only conventional single mode silica fiber. With a pump power of only 1.63W a ~15dB bandwidth >260 nm wide (from 1440 to >1700nm) supercontinuum source is reported with a flatness of <1dB over 180nm using an optimised hybrid TW/HNLF cavity. We address the dependence of the supercontinuum spectrum on the input pump power and ultra-long Raman cavity

    Optical turbulence and spectral condensate in long fibre lasers

    Get PDF
    We study numerically optical turbulence using the particular example of a recently created, ultra-long fibre laser. For normal fibre dispersion, we observed an intermediate state with an extremely narrow spectrum (condensate), which experiences instability and a sharp transition to a fluctuating regime with a wider spectrum. We demonstrate that the number of modes has an impact on the condensate’s lifetime. The smaller the number of modes, the more resistant is the condensate to perturbations. Experimental results show a good agreement with numerical simulations

    Broadly tunable high-power random fibre laser

    Get PDF
    As shown recently, a long telecommunication fibre may be treated as a natural one-dimensional random system, where lasing is possible due to a combination of random distributed feedback via Rayleigh scattering by natural refractive index inhomogeneities and distributed amplification through the Raman effect. Here we present a new type of a random fibre laser with a narrow (∼1 nm) spectrum tunable over a broad wavelength range (1535-1570 nm) with a uniquely flat (∼0.1 dB) and high (>2 W) output power and prominent (>40 %) differential efficiency, which outperforms traditional fibre lasers of the same category, e.g. a conventional Raman laser with a linear cavity formed in the same fibre by adding point reflectors. Analytical model is proposed that explains quantitatively the higher efficiency and the flatter tuning curve of the random fiber laser compared to conventional one. The other important features of the random fibre laser like "modeless" spectrum of specific shape and corresponding intensity fluctuations as well as the techniques of controlling its output characteristics are discussed. Outstanding characteristics defined by new underlying physics and the simplicity of the scheme implemented in standard telecom fibre make the demonstrated tunable random fibre laser a very attractive light source both for fundamental science and practical applications such as optical communication, sensing and secure transmission

    Experimental evaluation of impairments in unrepeatered DP-16QAM link with distributed raman amplification

    Get PDF
    The transmission impairments of a Raman amplified link using dual-polarization 16-quadrature amplitude modulation (DP-16QAM) are experimentally characterized. The impact of amplitude and phase noise on the signal due to relative intensity noise (RIN) transfer from the pump are compared for two pumping configurations: first-order backward pumping and bi-directional pumping. Experimental results indicate that with increased Raman backward pump power, though the optical signal-to-noise ratio (OSNR) is increased, so is the pump-induced amplitude and phase noise. The transmission performance is firstly improved by the enhanced OSNR at a low pump power until an optimum point is reached, and then the impairments due to pump-induced noise start to dominate. However, the introduction of a low pump power in the forward direction can further improve the system's performance

    RIN-penalty mitigation and transmission performance improvement using forward propagated broadband first order Raman pump

    Get PDF
    We demonstrate that using a broadband pump enables forward-propagated first order distributed Raman amplification by mitigating RIN-associated penalty. This extends the reach of 10 × 120 Gb/s DP-QPSK WDM transmission up to 7499 km, compared with other commercially available pumps. Moreover, using this Raman scheme maintains uniform/symmetric signal power distribution and requires low pump power

    Long-distance soliton transmission through ultralong fiber lasers

    Get PDF
    We present the first experimental demonstration (to our knowledge) of long-distance unperturbed fundamental optical soliton transmission in conventional single-mode optical fiber. The virtual transparency in the fiber required for soliton transmission, over 15 complete periods, was achieved by using an ultralong Raman fiber laser amplification scheme. Optical soliton pulse duration, pulse bandwidth, and peak intensity are shown to remain constant along the transmission length. Frequency-resolved optical gating spectrograms and numerical simulations confirm the observed optical soliton dynamics

    Performance characterization of high gain, high output power and low noise cascaded broadband discrete Raman amplifiers

    Get PDF
    In this paper, gain, noise and nonlinear performance characterization of cascaded broadband discrete Raman amplifiers with different gain fibre combinations is presented. We numerically demonstrate the design of a backward-pumped cascaded dual stage broadband (∼70 nm) discrete Raman amplifier with high gain (∼19 dB), low noise (∼ 6 dB noise figure) and lower nonlinear penalty by optimizing two different types of gain fibres

    Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser

    Get PDF
    We have measured the longitudinal power distribution inside a random distributed feedback Raman fiber laser. The observed distribution has a sharp maximum whose position depends on pump power. The spatial distribution profiles are different for the first and the second Stokes waves. Both analytic solution and results of direct numerical modeling are in excellent agreement with experimental observations

    Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback

    Get PDF
    We present experimental demonstration of a 200-km-long, dual-wavelength Raman laser utilizing two slightly different-wavelength fiber Bragg gratings, one on each side of the fiber span. The obtained results clearly prove the generation of two independent Raman lasers with a distributed >random> Rayleigh scattering mirror forming a cavity together with each of the individual fiber Bragg grating reflectors. © 2010 Optical Society of America.Peer Reviewe
    corecore