278 research outputs found

    Application of Plackett-Burman Design for Spectrochemical Determination of the Last-Resort Antibiotic, Tigecycline, in Pure Form and in Pharmaceuticals: Investigation of Thermodynamics and Kinetics.

    Get PDF
    Tigecycline (TIGC) reacts with 7,7,8,8-tetracyanoquinodimethane (TCNQ) to form a bright green charge transfer complex (CTC). The spectrum of the CTC showed multiple charge transfer bands with a major peak at 843 nm. The Plackett-Burman design (PBD) was used to investigate the process variables with the objective being set to obtaining the maximum absorbance and thus sensitivity. Four variables, three of which were numerical (temperature-Temp; reagent volume-RV; reaction time-RT) and one non-numerical (diluting solvent-DS), were studied. The maximum absorbance was achieved using a factorial blend of Temp: 25 °C, RV: 0.50 mL, RT: 60 min, and acetonitrile (ACN) as a DS. The molecular composition that was investigated using Job's method showed a 1:1 CTC. The method's validation was performed following the International Conference of Harmonization (ICH) guidelines. The linearity was achieved over a range of 0.5-10 µg mL with the limits of detection (LOD) and quantification (LOQ) of 166 and 504 ng mL, respectively. The method was applicable to TIGC per se and in formulations without interferences from common additives. The application of the Benesi-Hildebrand equation revealed the formation of a stable complex with a standard Gibbs free energy change (∆) value of -26.42 to -27.95 kJ/mol. A study of the reaction kinetics revealed that the CTC formation could be best described using a pseudo-first-order reaction

    Application of Infrared Spectroscopy in the Characterization of Lignocellulosic Biomasses Utilized in Wastewater Treatment

    Get PDF
    Global economies are confronting major energy challenges. Mitigating the energy depletion crisis and finding alternative and unconventional energy sources have been subjects for many investigations. Plant-sourced biomasses have started to attract global attention as a renewable energy source. Maximizing the performance of the biomass feedstock in different applications requires the availability of reliable and cost-effective techniques for characterization of the biomass. Comprehending the structure of lignocellulosic biomass is a very important way to assess the feasibility of bond formation and functionalization, structural architecture, and hence sculpting of the corresponding structure−property liaison. Over the past decades, non-invasive techniques have brought many pros that make them a valuable tool in depicting the structure of lignocellulosic materials. The current chapter will be focused on the applications of Fourier transform infrared (FTIR) spectroscopy especially in the mid-infrared region in the compositional and structural analysis of lignocellulosic biomasses. The chapter will provide a display of examples from the literature for the application of FTIR spectroscopy in finding the composition of various biomasses obtained from different parts of plants and applied for wastewater treatment. A comparison between biomasses and physically/chemically treated products will be discussed

    /8/4

    Get PDF
    Human hand posture detection and recognition is a challenging problem in computer vision. We introduce an algorithm that is capable to recognize hand posture in a sophisticated background. The system combines two algorithms to achieve better detection rate for hand. Recently Viola et al. in have introduced a rapid object detection scheme; we use this approach to detect the hand posture in the first set of consecutive frames. The chromatic color distribution of skin can be found within this cluster. As the shape of hand posture keep changing in the subsequent frames, the skin regions updated dynamically. The classification of hand posture makes use of static feature for locating and counting hand fingers. Kalman Filter is used to track the face and hand blobs based on their position. In the experiments, we have tested our system in various environments, and results showed effectiveness of the approach

    Synthesis and Application of Cobalt Oxide (Co3O4)-Impregnated Olive Stones Biochar for the Removal of Rifampicin and Tigecycline: Multivariate Controlled Performance

    Get PDF
    Cobalt oxide (Co3O4) nanoparticles supported on olive stone biochar (OSBC) was used as an efficient sorbent for rifampicin (RIFM) and tigecycline (TIGC) from wastewater. Thermal stabilities, morphologies, textures, and surface functionalities of two adsorbents; OSBC and Co-OSBC were compared. BET analysis indicated that Co-OSBC possesses a larger surface area (39.85 m2/g) and higher pore-volume compared to the pristine OSBC. FT-IR analysis showed the presence of critical functional groups on the surface of both adsorbents. SEM and EDX analyses showed the presence of both meso- and macropores and confirmed the presence of Co3O4 nanoparticles on the adsorbent surface. Batch adsorption studies were controlled using a two-level full-factorial design (2k-FFD). Adsorption efficiency of Co-OSBC was evaluated in terms of the % removal (%R) and the sorption capacity (qe, mg/g) as a function of four variables: pH, adsorbent dose (AD), drug concentration, and contact time (CT). A %R of 95.18% and 75.48% could be achieved for RIFM and TIGC, respectively. Equilibrium studies revealed that Langmuir model perfectly fit the adsorption of RIFM compared to Freundlich model for TIGC. Maximum adsorption capacity (qmax) for RIFM and TIGC was 61.10 and 25.94 mg/g, respectively. Adsorption kinetics of both drugs could be best represented using the pseudo-second order (PSO) model.This research was funded by Qatar University under the National Science Promotion Program, QUNSPP-(CAS)-2021-(108). The NSPP is managed by Qatar University Young Scientists Center (QUYSC), Doha, Qatar. The findings achieved herein are solely the responsibility of the author

    Breast Milk Macronutrients in Relation to Infants’ Anthropometric Measures

    Get PDF
    BACKGROUND: Breast milk (BM) is the main nutritional source for newborns before they are capable to eat and consume other foods. BM has carbohydrates, lipids, complex proteins, and other biologically active components which have a direct effect on infant growth. AIM: The aim of the study was to correlate anthropometric data of the infant to macronutrients in BM (fat, protein, and carbohydrates) and to find some modifiable issues affecting macronutrient contents of BM for the benefits of upcoming infants. METHODS: One hundred breastfeeding mothers participated in the study, they were recruited from the outpatient clinic, El Demerdash Hospital, Ain Shams University, from September 2019, to December 2019. BM was expressed by an electric pump, macronutrient content was assessed. Anthropometric data of the babies and mothers were obtained, gestational age, parity, age of the women, and the route of birth were recorded. RESULTS: For the macronutrients content of milk, a positive significant correlation was observed between BM fat, protein, and lactose. Infants’ body mass index (BMI) was negatively related to the fat content of BM, while no relation was found between BMI and protein or lactose content of the milk. BM fat content was negatively correlated with gestational age and maternal age. Positive correlations were found between BMI and protein, lactose and infant age. Protein content was negatively correlated with parity. No impact of infant’s sex on BM composition and as regards maternal diet, high protein consumption leading to increase BM protein content. CONCLUSIONS: The current study confirms that BM macronutrient composition has a wide variability; this variability is associated with each macronutrient, respectively. To improve BM composition, one could aim for improving the nutritional balance in lactating women, especially for protein intake. More well-designed longitudinal studies about factors that influence human milk compositions are warranted

    Carbon-Based Materials (CBMs) for Determination and Remediation of Antimicrobials in Different Substrates: Wastewater and Infant Foods as Examples

    Get PDF
    The widespread use of antimicrobials within either a therapeutic or a veterinary rehearsal has resulted in a crisis on the long run. New strains of antimicrobial-resistant microorganisms have appeared. Contamination of water with pharmaceutically active materials is becoming a fact! and efficacy of wastewater treatment plants is a question. Adsorption is a promising technique for wastewater treatment. Carbon-based materials are among the most commonly used adsorbents for remediation purposes. Food production and commercialization are posing rigorous regulations. In this concern, almost all authoritarian societies are setting up standards for the maximum residue levels permissible in raw and processed food. Among these products is infant foods. The current trend is to use carbon-based and recycled from agricultural wastes, which can selectively remove target antimicrobials. Nanoparticles are among the most commonly used materials. With the enormous amount of data generated from an analytical process, there is a need for a powerful data processing technique. Factorial designs play an important role in not only minimalizing the number of experimental runs, and hence saving chemicals, resources, and reducing waste but also, they serve to improve the sensitivity and selectivity, the most important analytical outcomes

    Comparison of two multiple-locus variable-number tandem-repeat analysis methods for molecular strain typing of human Brucella melitensis isolates from the Middle East

    Get PDF
    Brucella species are highly monomorphic, with minimal genetic variation among species, hindering the development of reliable subtyping tools for epidemiologic and phylogenetic analyses. Our objective was to compare two distinct multiple-locus variable-number tandem-repeat analysis (MLVA) subtyping methods on a collection of 101 Brucella melitensis isolates from sporadic human cases of brucellosis in Egypt (n = 83), Qatar (n = 17), and Libya (n = 1). A gel-based MLVA technique, MLVA-15IGM, was compared to an automated capillary electrophoresis-based method, MLVA-15NAU, with each MLVA scheme examining a unique set of variable-number tandem repeats. Both the MLVAIGM and MLVANAU methods were highly discriminatory, resolving 99 and 101 distinct genotypes, respectively, and were able to largely separate genotypes from Egypt and Qatar. The MLVA-15NAU scheme presented higher strain-to-strain diversity in our test population than that observed with the MLVA-15IGM assay. Both schemes were able to genetically correlate some strains originating from the same hospital or region within a country. In addition to comparing the genotyping abilities of these two schemes, we also compared the usability, limitations, and advantages of the two MLVA systems and their applications in the epidemiological genotyping of human B. melitensis strains

    Prediction of Gut Wall Integrity Loss in Viral Gastroenteritis by Non-Invasive Marker

    Get PDF
    BACKGROUND: Intestinal fatty acid binding proteins (I-FABPs) are mainly expressed in the intestinal villi, which are the initial site of destruction in viral gastroenteritis.AIM: This study was designed to assess serum I-FABPs as a predictor of gut wall integrity loss in viral gastroenteritis.PATIENTS AND METHODS: This case-control cross-sectional study was conducted on 93 cases of acute viral gastroenteritis. Twenty-eight healthy children matching in age were recruited as control group. Serum I-FABPs were measured using ELISA technique. Viral detection and typing were done by PCR for adenovirus, and by Reverse transcriptase PCR for rotavirus, astrovirus and norovirus.RESULTS: Serum I-FABPs level was significantly higher in the cases compared to the controls and was also higher in the 46 rotavirus gastroenteritis cases compared to other viral gastroenteritis cases. Serum I- FABPs level was significantly higher in severely dehydrated cases as compared to mildly dehydrated ones (P=0.037).CONCLUSION: Serum I-FABPs could be used as an early and sensitive predictor marker of gut wall integrity loss in children with viral gastroenteritis and its level can indicate case severity
    corecore