9 research outputs found

    G019 Cholesterol depletion enhances Kv1.5-encoded K+ current by increasing Rab11-mediated recycling

    Get PDF
    Membrane lipid composition is a major determinant of protein organisation in the cell membrane. In a previous study, we reported that depletion of membrane cholesterol by methyl-fÒ-cyclodextrin (MCD) causes a marked increase in Kv1.5-current (Ikur) in neonatal cardiac myocytes. Here, we examined the mechanisms of the cholesterol effects on potassium current in adult rat cardiomyocytes (ARC). GFP-tagged Kv1.5 channels were transduced in ARC using adenoviral vectors and patch clamp experiments were performed to record whole-cell currents and single channel activity. Fluorescence recovery after photobleaching (FRAP) technique was used to investigate GFP-Kv1.5 channels mobility; 3D-epifluorescence microscopy was conducted to follow Kv1.5 channels trafficking.In both freshly isolated and cultured ARC over-expressing GFP-Kv1.5 channels, MCD induced a rapid (< 7min) increase in Ikur but not Ito. On the contrary, incubation with the cholesterol donor LDL reduced Ikur. Single channel experiments revealed that MCD application caused a progressive and drastic increase of the number of active channels. Moreover, FRAP experiments showed that MCD reduced both mobility and recovery of GFP-Kv1.5. Several steps of the trafficking process of ion channels were studied. Blocking SNARE-mediated exocytosis with N-ethylmaleimide prevented the MCD-effect on Ikur. While disruption of Golgi complex/secretion pathway with brefeldine-A had no effect, manipulation of GTP-ases activity with GTP-f×-S suppressed the MCD effect. Transfection with a dominant negative (DN) form of Rab11 effect but not Rab4 DN prevented the MCD. Moreover, Kv1.5 channels co-immunoprecipitated with Rab11 which is stringly expressed in myocardium and ARC (qPCR and western blot). Finally, 3D-microscopy evidenced that Kv1.5 channels association with Rab11-positive recycling endosomes observed in control condition disappeared following cholesterol depletion.ConclusionLowering cholesterol rapidly induces the insertion of Kv1.5 channels by a process that involves vesicle fusion and trafficking processes, particularly the Rab11-associated slow recycling pathway. Given the role of Kv1.5 channel in normal and pathological atrial electrical properties, this study opens news perspectives for therapeutic modulation of cardiac myocytes excitability

    Cholesterol modulates the recruitment of Kv1.5 channels from Rab11-associated recycling endosome in native atrial myocytes

    No full text
    Cholesterol is an important determinant of cardiac electrical properties. However, underlying mechanisms are still poorly understood. Here, we examine the hypothesis that cholesterol modulates the turnover of voltage-gated potassium channels based on previous observations showing that depletion of membrane cholesterol increases the atrial repolarizing current IKur. Whole-cell currents and single-channel activity were recorded in rat adult atrial myocytes (AAM) or after transduction with hKv1.5-EGFP. Channel mobility and expression were studied using fluorescence recovery after photobleaching (FRAP) and 3-dimensional microscopy. In both native and transduced-AAMs, the cholesterol-depleting agent MβCD induced a delayed (≈7 min) increase in IKur; the cholesterol donor LDL had an opposite effect. Single-channel recordings revealed an increased number of active Kv1.5 channels upon MβCD application. Whole-cell recordings indicated that this increase was not dependent on new synthesis but on trafficking of existing pools of intracellular channels whose exocytosis could be blocked by both N-ethylmaleimide and nonhydrolyzable GTP analogues. Rab11 was found to coimmunoprecipitate with hKv1.5-EGFP channels and transfection with Rab11 dominant negative (DN) but not Rab4 DN prevented the MβCD-induced IKur increase. Three-dimensional microscopy showed a decrease in colocalization of Kv1.5 and Rab11 in MβCD-treated AAM. These results suggest that cholesterol regulates Kv1.5 channel expression by modulating its trafficking through the Rab11-associated recycling endosome. Therefore, this compartment provides a submembrane pool of channels readily available for recruitment into the sarcolemma of myocytes. This process could be a major mechanism for the tuning of cardiac electrical properties and might contribute to the understanding of cardiac effects of lipid-lowering drugs

    The promise of CaMKII inhibition for heart disease:preventing heart failure and arrhythmias

    No full text
    <p>Introduction: Calcium-calmodulin-dependent protein kinase II (CaMKII) has emerged as a central mediator of cardiac stress responses which may serve several critical roles in the regulation of cardiac rhythm, cardiac contractility and growth. Sustained and excessive activation of CaMKII during cardiac disease has, however, been linked to arrhythmias, and maladaptive cardiac remodeling, eventually leading to heart failure (HF) and sudden cardiac death.</p><p>Areas covered: In the current review, the authors describe the unique structural and biochemical properties of CaMKII and focus on its physiological effects in cardiomyocytes. Furthermore, they provide evidence for a role of CaMKII in cardiac pathologies, including arrhythmogenesis, myocardial ischemia and HF development. The authors conclude by discussing the potential for CaMKII as a target for inhibition in heart disease.</p><p>Expert opinion: CaMKII provides a promising nodal point for intervention that may allow simultaneous prevention of HF progression and development of arrhythmias. For future studies and drug development there is a strong rationale for the development of more specific CaMKII inhibitors. In addition, an improved understanding of the differential roles of CaMKII subtypes is required.</p>
    corecore