194 research outputs found

    Comparison of safety indexes for chemical processes under uncertainty

    Get PDF
    PresentationThe fatal consequences of industrial incidents have made evident the need for suitable tools to develop inherently safer process designs. Traditionally, in a process design project, the evaluation of safety aspects is left for analysis after the detailed design has been completed. This approach leads to the use of control loops, barriers and protection layers as the only ways to prevent incidents and to reduce the possible outcomes. An alternative to this approach is the application of the concept of inherent safety, which was introduced to set up several principles that aim to enhance process safety by eliminating, avoiding or minimizing sources of risk. In this work, we present a comparison of different safety metrics in their role to evaluate the risk associated with a given process design. The indices selected for consideration are better applied at the conceptual stage of the process design, and they were the Dow’s fire and explosion index (F&EI), the fire and explosion damage index (FEDI), the process route index (PRI) and the process stream index (PSI). All these indices use different input information and their outcomes have different rankings. The metrics were applied to an ethylene production process to identify risk levels, and the location of streams and pieces of equipment that pose the highest risk within the process. An evaluation of the indices in their capability to track design changes in operating conditions aiming to improve the safety level of the process was developed. To perform the assessment of the safety metrics in a more extensive manner, an uncertainty analysis based on a Monte Carlo simulation framework was implemented and compared to the traditional use of single-value design variables. Within this context, an insightful assessment of uncertainty’s effect on process safety characteristics was achieved because of the identification of ranges of safety- relevant performance outcomes (zones of risks and opportunities) that can be probabilistically characterized. The approach was applied to a case study related to the production of ethylene from shale gas. The results showed how some indexes are better suited to capture the risk characteristics associated with the process when changes in the operating conditions of the section with highest risk were implemented. The methodology can be extended to other processes of interest, and may serve as a basis for the safety and process design community to propose adjustments in the structure of the safety indices based on a better understanding of their performance and reliability as part of the efforts towards the continued improvement of those safety metrics

    Optimal Design of Thermal Membrane Distillation Systems for the Treatment of Shale Gas Flowback Water

    Get PDF
    Shale gas production is associated with the significant consumption of fresh water and discharge of wastewater. The flowback wastewater is tied to the hydraulic fracturing technology used for completing and stimulating the horizontal wells in the very tight formations characterizing the shale formation. Treatment and reuse of these large volumes of wastewater can lead to substantial savings in fresh water usage and reduction of the negative environmental impact thereby enhancing sustainability of the shale gas industry. Such treatment requires selective and cost-effective technology.Thermal membrane distillation (TMD) is an emerging technology that offers several advatanges such as high selectivity in separating water from inorganic solutes and modular nature that can accommodate a wide range of flows. It can also utilize low-level heats that are typically available from shale-gas production and processing.The objective of this work is to develop an optimization approach for the design of TMD systems to treat flowback water. A multi-period formulation is developed to account for the time-based variation in the flowrate and concentration of the flowback water. Modeling equations are used to relate design and operating variables to performance and cost. The optimization formulation also accounts for the period-based changes in the required design and operating variables and reconciles them over the selected periods. Other constraints include quality of the permeate and water-recovery ratio. The optimization formulation and design approach are applied to a case study for the treatment of flowback water for the Marcellus Shale Play. For 75% water recovery, the cost of the permeate is about $2.6/m3. As higher recoveries are sought, the cost per m3 of permeate increases due to capital productivity factors in dealing with the decreasing amount of flowback water over time. The results are reported using a Pareto chart that trades off recovery objectives with cost of treated water
    corecore