8 research outputs found

    The role of ascorbic acid combined exposure on Imidacloprid-induced oxidative stress and genotoxicity in Nile tilapia

    No full text
    Imidacloprid (Imid), a systemic neonicotinoid insecticide, is broadly used worldwide. It is reported to contaminate aquatic systems. This study was proposed to evaluate oxidative stress and genotoxicity of Imid on Nile tilapia (Oreochromis niloticus) and the protective effect of ascorbic acid (Asc). O. niloticus juveniles (30.4 +/- 9.3 g, 11.9 +/- 1.3 cm) were divided into six groups (n=10/replicate). For 21 days, two groups were exposed to sub-lethal concentrations of Imid (8.75 ppm, 1/20 of 72 h-LC50 and 17.5 ppm, 1/10 of 72 h-LC50); other two groups were exposed to Asc (50 ppm) in combination with Imid (8.75 and 17.5 ppm); one group was exposed to Asc (50 ppm) in addition to a group of unexposed fish which served as controls. Oxidative stress was assessed in the liver where the level of enzymatic activities including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in addition to mRNA transcripts and, Lipid peroxidation (LPO) were evaluated. Moreover, mitotic index (MI) and comet assay were performed, in addition, the erythrocytic micronucleus (MN), and nuclear abnormalities (NA) were observed to assess genotoxicity in fish. Imid exposure induced significant (p?0.05) changes in the antioxidant profile of the juveniles' liver by increasing the activities and gene expression of SOD, CAT and GPX as well as elevating the levels of LPO. DNA strand breaks in gill cells, erythrocytes and hepatocytes along with erythrocytic MN and NA were also significantly elevated in Imid-exposed groups. MI showed a significant (p?0.05) decrease associated with Imid exposure. Asc administration induced a significant amelioration towards the Imid toxicity (8.75 and 17.5 ppm). A significant protective potency against the genotoxic effects of Imid was evidenced in Asc co-treated groups. Collectively, results highlight the importance of Asc as a protective agent against Imid-induced oxidative stress and genotoxicity in O. niloticus juveniles

    Angiotensinogen Gene Missense Polymorphisms (rs699 and rs4762) : The Association of End-Stage Renal Failure Risk with Type 2 Diabetes and Hypertension in Egyptians

    No full text
    Type 2 diabetes mellitus (T2DM) and hypertension are common chronic diseases mainly associated with the development and progression of end-stage renal disease (ESRD) leading to morbidity and mortality. Gene polymorphisms linked to the renin–angiotensin (AGT)–aldosterone system (RAAS) were broadly inspected in patients with diabetic nephropathy (DN) and hypertension. This study aimed to investigate the association of AGT gene polymorphisms (rs699 and rs4762) with ESRD in T2DM hypertensive Egyptian patients. Genotyping of rs699 and rs4762 was conducted using the tetra-primers amplification refractory mutation system (ARMS-PCR). The allelic distribution analysis was performed on 103 healthy control subjects, 97 non-ESRD patients, and 104 patients with ESRD. The allelic frequencies of AGT gene polymorphisms (rs4762 and rs699) in all study participants were assessed. For the non-ESRD group, the frequencies of the alleles of AGT-rs4762 (χ2 = 31.88, p < 0.001, OR = 5.17, CI 95%: 2.81–9.51) and AGT-rs699 (χ2 = 4.85, p = 0.027, OR = 1.56, CI 95%: 1.05–2.33) were significantly associated with the non-ESRD group. However, for the ESRD group, the T allele was significantly higher than that in the controls (χ2 = 24.97, p < 0.001, odds ratio (OR) = 4.35, CI 95%: 2.36–8.02). Moreover, AGT (rs699) genotypes showed no significant difference between the ESRD group and controls. In conclusion, AGT gene polymorphisms rs699 and rs4762 were associated with non-ESRD versus controls, without any significant risk observed in all patient groups. However, the AGT (rs4762) variant showed a significant risk in the ESRD group in comparison to controls in Egyptians

    A newly isolated strain of Halomonas sp. (HA1) exerts anticancer potential via induction of apoptosis and G(2)/M arrest in hepatocellular carcinoma (HepG2) cell line

    No full text
    Marine bacterial strains are of great interest for their ability to produce secondary metabolites with anticancer potentials. Isolation, identification, characterization and anticancer activities of isolated bacteria from El-Hamra Lake, Wadi El-Natrun (Egypt) were the objectives of this study. The isolated bacteria were identified as a moderately halophilic alkaliphilic strain. Ethyl acetate extraction was performed and identified by liquid chromatography-mass spectrophotometry (LC-MS-MS) and nuclear magnetic resonance analysis (NMR). Cytotoxicity of the extract was assessed on the HepG2 cell line and normal human peripheral lymphocytes (HPBL) in vitro. Halomonas sp. HA1 extract analyses revealed anticancer potential. Many compounds have been identified including cyclo-(Leu-Leu), cyclo-(Pro-Phe), C17-sphinganine, hexanedioic acid, bis (2-ethylhexyl) ester, surfactin C14 and C15. The extract exhibited an IC50 of 68 +/- 1.8 mu g/mL and caused marked morphological changes in treated HepG2 cells. For mechanistic anticancer evaluation, 20 and 40 mu g/mL of bacterial extract were examined. The up-regulation of apoptosis-related genes' expression, P53, CASP-3, and BAX/BCL-2 at mRNA and protein levels proved the involvement of P53-dependant mitochondrial apoptotic pathway. The anti-proliferative properties were confirmed by significant G(2)/M cell cycle arrest and PCNA down-regulation in the treated cells. Low cytotoxicity was observed in HPBL compared to HepG2 cells. In conclusion, results suggest that the apoptotic and anti-proliferative effects of Halomonas sp. HA1 extract on HepG2 cells can provide it as a candidate for future pharmaceutical industries

    Anti-proliferative and immunomodulatory potencies of cinnamon oil on Ehrlich ascites carcinoma bearing mice

    No full text
    Cinnamon is a well-known natural spice and flavoring substance used worldwide. The objective of the present work is to explore the possible antitumor and immunomodulatory potencies of cinnamon essential oil (Cinn) on Ehrlich ascites carcinoma (EAC). A total of fifty female Swiss albino mice were sub-grouped into five groups (n =10), namely, normal (a non-tumorized and non-treated) group; EAC-tumorized and non-treated group; Cinn (non-tumorized mice received Cinn, 50 mg/kg per body weight daily) group; a group of EAC-tumorized mice treated with Cinn and the final positive control group of EAC-tumorized mice received cisplatin. Eight compounds were identified from Cinn using UPLC-MS-Qtof and NMR analysis. Compared to EAC untreated group, Cinn successfully (P < 0.05) inhibited tumor growth by reducing tumor cell count (45%), viability (53%) and, proliferation accompanied by the inhibition of tumor growth rate. Moreover, a significant (P < 0.05) arrest in the cell cycle at G(0)/G(1)( )phase was noticed following Cinn treatments (similar to 24.5%) compared to EAC group. Moreover, Cinn markedly evoked an antitumor immune response by elevating the percentage of splenic T helper (CD3(+)CD4(+)) and T cytotoxic (CD3(+)CD8(+)) cells. It is noteworthy that Cinn treatments significantly restored different hematological alterations as well as liver and kidney functions in EAC-tumorized mice. In conclusion, results suggest that Cinn has a good antitumor and immunostimulatory potencies against Ehrlich ascites carcinoma in vivo. The mechanism underlying its antitumor activity may be attributed to its immunostimulatory effects which increase its potential as a promising anticancer candidate

    In Vitro Induction of Apoptosis in Isolated Acute Myeloid Leukemia Cells : The Role of Anastatica hierochuntica Methanolic Extract

    No full text
    Anastatica hierochuntica L. (Cruciferae) has been known in Egyptian folk medicine as a remedy for gastrointestinal disorders, diabetes and heart diseases. Despite the wide usage, A. hierochuntica research provides insufficient data to support its traditional practice. The cytotoxicity of A. hierochuntica methanolic extract was investigated on acute myeloid leukemia blasts (AML) and normal human peripheral leucocytes (NHPL). The phytochemical identification of bioactive compounds using H-1-NMR and LC-ESI-MS was also performed. A. hierochuntica extract caused non-significant cytotoxicity on NHPL, while the cytotoxicity on AML was significant (IC50: 0.38 +/- 0.02 mu g/mL). The negative expression of p53, upregulation of Caspase-3 and increase in the BAX/BCL-2 ratio were reported at the protein and mRNA levels. The results suggest that A. hierochuntica extract induced AML cell death via the p53-independent mitochondrial intrinsic pathway and further attention should be paid to this plant as a promising natural anticancer agent

    Structural Diversity, LC-MS-MS Analysis and Potential Biological Activities of Brevibacillus laterosporus Extract

    No full text
    Lake Mariout is Egypt's degraded coastal marine habitat that encompasses a variety of wastes. The biodiversity and hard environmental conditions allow the co-existence of organisms with high resistance and rich metabolism, making them potential candidates for screening and isolating novel microbial strains. A bacterial isolate (BF202) cultured from the marine sediments of Alexandria's Mariout Lake (Egypt) was tested for its antimicrobial and anticancer potential. The phylogenetic analysis of the isolated strain's 16S rDNA and gyrB revealed that BF202 belongs to Brevibacillus laterosporus (B. laterosporus). Antibiosis of B. laterosporus was confirmed against microbial pathogens including Escherichia coli, Klebsiella pneumoniae, Salmonella typhi, and Staphylococcus aureus. The highest antibacterial activity was detected on glucose peptone medium after 18 h of incubation at 35 degrees C, and at pH of 7.0 in the presence of mannose and ammonium carbonate as carbon and nitrogen sources, respectively. The cytotoxicity of the methanolic extract against breast cancer (MCF-7) and normal Vero cell lines, using the MTT test, revealed IC50 values of 7.93 and 23.79 mu g/mL, respectively. To identify apoptotic and necrotic cells, a flow cytometric analysis using annexin V-FITC/PI dual-labeling was utilized and recorded a higher number of necrotic cells compared to apoptotic ones. Similarly, the cell cycle S-phase arrest was reported. The LC-MS-MS investigation of B. laterosporus extract and the molecular networking database analysis demonstrated five strategic diketopiperazine compounds with antimicrobial and anticancer activities. Taken together, this research shows that the crude extract of B. laterosporus might be an effective agent against drug-resistant bacteria and malignant disorders due to its richness in diketopiperazines

    Wasp Venom Biochemical Components and Their Potential in Biological Applications and Nanotechnological Interventions

    No full text
    Wasps, members of the order Hymenoptera, are distributed in different parts of the world, including Brazil, Thailand, Japan, Korea, and Argentina. The lifestyles of the wasps are solitary and social. Social wasps use venom as a defensive measure to protect their colonies, whereas solitary wasps use their venom to capture prey. Chemically, wasp venom possesses a wide variety of enzymes, proteins, peptides, volatile compounds, and bioactive constituents, which include phospholipase A2, antigen 5, mastoparan, and decoralin. The bioactive constituents have anticancer, antimicrobial, and anti-inflammatory effects. However, the limited quantities of wasp venom and the scarcity of advanced strategies for the synthesis of wasp venom's bioactive compounds remain a challenge facing the effective usage of wasp venom. Solid-phase peptide synthesis is currently used to prepare wasp venom peptides and their analogs such as mastoparan, anoplin, decoralin, polybia-CP, and polydim-I. The goal of the current review is to highlight the medicinal value of the wasp venom compounds, as well as limitations and possibilities. Wasp venom could be a potential and novel natural source to develop innovative pharmaceuticals and new agents for drug discovery
    corecore