57 research outputs found

    Full automation of total metabolic tumor volume from FDG-PET/CT in DLBCL for baseline risk assessments

    Get PDF
    BACKGROUND: Current radiological assessments of (18)fluorodeoxyglucose-positron emission tomography (FDG-PET) imaging data in diffuse large B-cell lymphoma (DLBCL) can be time consuming, do not yield real-time information regarding disease burden and organ involvement, and hinder the use of FDG-PET to potentially limit the reliance on invasive procedures (e.g. bone marrow biopsy) for risk assessment. METHODS: Our aim is to enable real-time assessment of imaging-based risk factors at a large scale and we propose a fully automatic artificial intelligence (AI)-based tool to rapidly extract FDG-PET imaging metrics in DLBCL. On availability of a scan, in combination with clinical data, our approach generates clinically informative risk scores with minimal resource requirements. Overall, 1268 patients with previously untreated DLBCL from the phase III GOYA trial (NCT01287741) were included in the analysis (training: n = 846; hold-out: n = 422). RESULTS: Our AI-based model comprising imaging and clinical variables yielded a tangible prognostic improvement compared to clinical models without imaging metrics. We observed a risk increase for progression-free survival (PFS) with hazard ratios [HR] of 1.87 (95% CI: 1.31–2.67) vs 1.38 (95% CI: 0.98–1.96) (C-index: 0.59 vs 0.55), and a risk increase for overall survival (OS) (HR: 2.16 (95% CI: 1.37–3.40) vs 1.40 (95% CI: 0.90–2.17); C-index: 0.59 vs 0.55). The combined model defined a high-risk population with 35% and 42% increased odds of a 4-year PFS and OS event, respectively, versus the International Prognostic Index components alone. The method also identified a subpopulation with a 2-year Central Nervous System (CNS)-relapse probability of 17.1%. CONCLUSION: Our tool enables an enhanced risk stratification compared with IPI, and the results indicate that imaging can be used to improve the prediction of central nervous system relapse in DLBCL. These findings support integration of clinically informative AI-generated imaging metrics into clinical workflows to improve identification of high-risk DLBCL patients. TRIAL REGISTRATION: Registered clinicaltrials.gov number: NCT01287741. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40644-022-00476-0

    Development of a Precision Medicine Workflow in Hematological Cancers, Aalborg University Hospital, Denmark

    Get PDF
    Within recent years, many precision cancer medicine initiatives have been developed. Most of these have focused on solid cancers, while the potential of precision medicine for patients with hematological malignancies, especially in the relapse situation, are less elucidated. Here, we present a demographic unbiased and observational prospective study at Aalborg University Hospital Denmark, referral site for 10% of the Danish population. We developed a hematological precision medicine workflow based on sequencing analysis of whole exome tumor DNA and RNA. All steps involved are outlined in detail, illustrating how the developed workflow can provide relevant molecular information to multidisciplinary teams. A group of 174 hematological patients with progressive disease or relapse was included in a non-interventional and population-based study, of which 92 patient samples were sequenced. Based on analysis of small nucleotide variants, copy number variants, and fusion transcripts, we found variants with potential and strong clinical relevance in 62% and 9.5% of the patients, respectively. The most frequently mutated genes in individual disease entities were in concordance with previous studies. We did not find tumor mutational burden or micro satellite instability to be informative in our hematologic patient cohort

    A multiple myeloma classification system that associates normal B-cell subset phenotypes with prognosis.

    Get PDF
    Despite the recent progress in treatment of multiple myeloma (MM), it is still an incurable malignant disease, and we are therefore in need of new risk stratification tools that can help us to understand the disease and optimize therapy. Here we propose a new subtyping of myeloma plasma cells (PCs) from diagnostic samples, assigned by normal B-cell subset associated gene signatures (BAGS). For this purpose, we combined fluorescence-activated cell sorting and gene expression profiles from normal bone marrow (BM) Pre-BI, Pre-BII, immature, naïve, memory, and PC subsets to generate BAGS for assignment of normal BM subtypes in diagnostic samples. The impact of the subtypes was analyzed in 8 available data sets from 1772 patients' myeloma PC samples. The resulting tumor assignments in available clinical data sets exhibited similar BAGS subtype frequencies in 4 cohorts from de novo MM patients across 1296 individual cases. The BAGS subtypes were significantly associated with progression-free and overall survival in a meta-analysis of 916 patients from 3 prospective clinical trials. The major impact was observed within the Pre-BII and memory subtypes, which had a significantly inferior prognosis compared with other subtypes. A multiple Cox proportional hazard analysis documented that BAGS subtypes added significant, independent prognostic information to the translocations and cyclin D classification. BAGS subtype analysis of patient cases identified transcriptional differences, including a number of differentially spliced genes. We identified subtype differences in myeloma at diagnosis, with prognostic impact and predictive potential, supporting an acquired B-cell trait and phenotypic plasticity as a pathogenetic hallmark of MM
    • …
    corecore